首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced.  相似文献   

2.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).  相似文献   

3.
The methionine adenosyltransferase (MAT; EC 2.5.1.6) mediated synthesis of S-adenosylmethionine (AdoMet) is a two-step process, consisting of the formation of AdoMet and the subsequent cleavage of the tripolyphosphate (PPPi) molecule, a reaction induced, in turn, by AdoMet. The fact that the two activities--AdoMet synthesis and tripolyphosphate hydrolysis--can be measured separately is particularly useful when the site-directed mutagenesis approach is used to determine the functional role of the amino acid residues involved in each. This report describes the mutational analysis of the amino acids involved in both the ATP and L-methionine binding sites of Leishmania donovani MAT (GenBank accession number AF179714) the aetiological agent of visceral leishmaniasis. Site-directed mutagenesis was used to substitute neutral residues for the basic amino acid (Lys168, Lys256, Lys276, Lys280 and His17), acidic residues (Asp19, Asp121, Asp166, Asp249, Asp277 and Asp288) and Phe241 involved in AdoMet synthesis and PPPi hydrolysis. With the exception of D116N, none of these mutants was able to synthesize AdoMet at a significant rate, although H17A, H17N, K256A, K280A, D19N, D121N, D166N, D249N and D282N showed measurable tripolyphosphatase activity. Finally, the C-terminus domain of L. donovani MAT was truncated at three points (F382Stop, D375Stop, F368Stop), deleting a 3(10) one-turn helix motif in all three cases. Whilst none of the truncated proteins conserved MAT activity, they were able to hydrolyse PPPi, albeit at a lower rate than the wild-type enzyme. A fourth protein with an internal deletion (E376DeltaF382) in the C-terminal domain conserved high tripolyphosphatase activity, which was not, however, induced by 50 microM AdoMet.  相似文献   

4.
The restriction endonuclease from Escherichia coli K is a multifunctional protein which efficiently methylates heteroduplex DNA (one strand modified and one strand unmodified) in the presence of S-adenosylmethionine (AdoMet), ATP, and Mg2+. The methylase activity is catalytic, and seems to modify different heteroduplex host specificity sites for E. coli K with equal efficiency. In the methylase reaction, both AdoMet and ATP (or its imido analog) act as allosteric effectors, but AdoMet also serves as a methyl donor. Preincubation of the enzyme with AdoMet eliminates the lag period observed in DNA methylation. The rate of enzyme activation was determined using the AdoMet analog Sinefungin. The result are consistent with the hypothesis that the early steps of AdoMet binding and enzyme activation are common to both restriction and modification reactions.  相似文献   

5.
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.  相似文献   

6.
Methionine adenosyltransferase (MAT, EC 2.5.1.6)-mediated synthesis of S-adenosylmethionine (AdoMet) is a two-step process consisting of the formation of AdoMet and the subsequent cleavage of the tripolyphosphate (PPPi) molecule, a reaction induced, in turn, by AdoMet. The fact that the two activities, AdoMet synthesis and tripolyphosphate hydrolysis, can be measured separately is particularly useful when the site-directed mutagenesis approach is used to determine the functional role of the amino acid residues involved in each. The present report describes the cloning and subsequent functional refolding, using a bacterial expression system, of the MAT gene (GenBank accession number AF179714) from Leishmania donovani, the etiological agent of visceral leishmaniasis. The absolute need to include a sulfhydryl-protection reagent in the refolding buffer for this protein, in conjunction with the rapid inactivation of the functionally refolded protein by N-ethylmaleimide, suggests the presence of crucial cysteine residues in the primary structure of the MAT protein. The seven cysteines in L. donovani MAT were mutated to their isosterical amino acid, serine. The C22S, C44S, C92S and C305S mutants showed a drastic loss of AdoMet synthesis activity compared to the wild type, and the C33S and C47S mutants retained a mere 12% of wild-type MAT activity. C106S mutant activity and kinetics remained unchanged with respect to the wild-type. Cysteine substitutions also modified PPPi cleavage and AdoMet induction. The C22S, C44S and C305S mutants lacked in tripolyphosphatase activity altogether, whereas C33S, C47S and C92S retained low but detectable activity. The behavior of the C92S mutant was notable: its inability to synthesize AdoMet combined with its retention of tripolyphosphatase activity appear to be indicative of the specific involvement of the respective residue in the first step of the MAT reaction.  相似文献   

7.
The enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase catalyzes the penultimate step in the biosynthesis of the hypermodified tRNA nucleoside queuosine (Q), an unprecedented ribosyl transfer from the cofactor S-adenosylmethionine (AdoMet) to a modified-tRNA precursor to generate epoxyqueuosine (oQ). The complexity of the reaction makes it an especially interesting mechanistic problem, and as a foundation for detailed kinetic and mechanistic studies we have carried out the basic characterization of the enzyme. Importantly, to allow for the direct measurement of oQ formation, we have developed protocols for the preparation of homogeneous substrates; specifically, an overexpression system was constructed for tRNA(Tyr) in an E. coli queA deletion mutant to allow for the isolation of large quantities of substrate tRNA, and [U-ribosyl-(14)C]AdoMet was synthesized. The enzyme shows optimal activity at pH 8.7 in buffers containing various oxyanions, including acetate, carbonate, EDTA, and phosphate. Unexpectedly, the enzyme was inhibited by Mg(2+) and Mn(2+) in millimolar concentrations. The steady-state kinetic parameters were determined to be K(m)(AdoMet) = 101.4 microm, K(m)(tRNA) = 1.5 microm, and k(cat) = 2.5 min(-1). A short minihelix RNA was synthesized and modified with the precursor 7-aminomethyl-7-deazaguanine, and this served as an efficient substrate for the enzyme (K(m)(RNA) = 37.7 microm and k(cat) = 14.7 min(-1)), demonstrating that the anticodon stem-loop is sufficient for recognition and catalysis by QueA.  相似文献   

8.
S-Adenosylmethionine synthetase (ATP:l-methionine S-adenosyltransferase, MAT) catalyzes a unique enzymatic reaction that leads to formation of the primary biological alkylating agent. MAT from the hyperthermophilic archaeon Methanococcus jannaschii (MjMAT) is a prototype of the newly discovered archaeal class of MAT proteins that are nearly unrecognizable in sequence when compared with the class that encompasses both the eucaryal and bacterial enzymes. In this study the functional properties of purified recombinant MjMAT have been evaluated. The products of the reaction are AdoMet, PP(i), and P(i); >90% of the P(i) originates from the gamma-phosphoryl group of ATP. The circular dichroism spectrum of the dimeric MjMAT indicates that the secondary structure is more helical than the Escherichia coli counterpart (EcMAT), suggesting a different protein topology. The steady state kinetic mechanism is sequential, with random addition of ATP and methionine; AdoMet is the first product released, followed by release of PP(i) and P(i). The substrate specificity differs remarkably from the previously characterized MATs; the nucleotide binding site has a very broad tolerance of alterations in the adenosine moiety. MjMAT has activity at 70 degrees C comparable with that of EcMAT at 37 degrees C, consistent with the higher temperature habitat of M. jannaschii. The activation energy for AdoMet formation is larger than that for the E. coli MAT-catalyzed reaction, in accord with the notion that enzymes from thermophilic organisms are often more rigid than their mesophilic counterparts. The broad substrate tolerance of this enzyme proffers routes to preparation of novel AdoMet analogs.  相似文献   

9.
DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-L-homocysteine (AdoHcy). The turnover rate (k cat) of M.HhaI, and the other two cytosine-5 MTases examined, is limited by a step subsequent to methyl transfer; however, no such step has so far been identified. To elucidate the role of cofactor interactions during catalysis, eight mutants of Trp41, which is located in the cofactor binding pocket, were constructed and characterized. The mutants show full proficiency in DNA binding and base-flipping, and little variation is observed in the apparent methyl transfer rate k chem as determined by rapid-quench experiments using immobilized fluorescent-labeled DNA. However, the Trp41 replacements with short side chains substantially perturb cofactor binding (100-fold higher K(AdoMet)D and K(AdoMet)M) leading to a faster turnover of the enzyme (10-fold higher k cat). Our analysis indicates that the rate-limiting breakdown of a long-lived ternary product complex is initiated by the dissociation of AdoHcy or the opening of the catalytic loop in the enzyme.  相似文献   

10.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

11.
12.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

13.
14.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main alkylating agent in living cells. Additionally, in the liver, MAT is also responsible for up to 50% of methionine catabolism. Humans with mutations in the gene MAT1A, the gene that encodes the catalytic subunit of MAT I and III, have decreased MAT activity in liver, which results in a persistent hypermethioninemia without homocystinuria. The hypermethioninemic phenotype associated with these mutations is inherited as an autosomal recessive trait. The only exception is the dominant mild hypermethioninemia associated with a G-A transition at nucleotide 791 of exon VII. This change yields a MAT1A-encoded subunit in which arginine 264 is replaced by histidine. Our results indicate that in the homologous rat enzyme, replacement of the equivalent arginine 265 by histidine (R265H) results in a monomeric MAT with only 0.37% of the AdoMet synthetic activity. However the tripolyphosphatase activity is similar to that found in the wild type (WT) MAT and is inhibited by PP(i). Our in vivo studies demonstrate that the R265H MAT I/III mutant associates with the WT subunit resulting in a dimeric R265H-WT MAT unable to synthesize AdoMet. Tripolyphosphatase activity is maintained in the hybrid MAT, but is not stimulated by methionine and ATP, indicating a deficient binding of the substrates. Our data indicate that the active site for tripolyphosphatase activity is functionally active in the monomeric R265H MAT I/III mutant. Moreover, our results provide a molecular mechanism that might explain the dominant inheritance of the hypermethioninemia associated with the R264H mutation of human MAT I/III.  相似文献   

15.
16.
17.
18.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

19.
S-adenosylmethionine synthetase from wheat embryos was purified to electrophoretic homogeneity. The mol wt of the enzyme was 174,000 as determined by molecular sieve chromatography on Sephacryl S-200. A single subunit of purified AdoMet synthetase was observed on SOS-PAGE with a mol wt of 84,000 suggesting that the enzyme is a homodimer. The apparent Km of purified enzyme with ATP and methionine is 80 μM and 100 μM, respectively. The pH optimum of the enzyme is 7.75. The enzyme requires MgCb, KCI and reduced glutathione for optimum activity. The 3H-labelled putative S-adenosylmethionine reaction product was converted into 3H-labelled 5′-methyl-thioadenosine by heat treatment (100°C, 10 min, pH 7.0). This proved the authenticity of the reaction product of the AdoMet synthetase in wheat embryos.  相似文献   

20.
Structural studies of N(10)-formyltetrahydrofolate synthetase (FTHFS) have indicated the involvement of Arg 97 in the binding of the formyl phosphate intermediate. Two site-directed mutants were constructed to test this hypothesis: R97S (Ser substitution) and R97E (Glu substitution). The k(cat) of R97S was approximately 60% that of the wild-type enzyme and had K(m) for ATP and formate twofold higher than those of wild type. R97E was completely inactive and had a K(m) for ATP nearly six times that of wild type. Substrate inhibition by tetrahydrofolate was shown to occur in wild-type and R97S enzymes using both steady-state and transient-state kinetic approaches. These results lend greater insight into the mechanistic function of FTHFS by confirming the interaction of both ATP and formate with Arg 97 and introducing the aspect of substrate inhibition by tetrahydrofolate with regard to substrate binding and dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号