首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(3):299-308
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met(O)) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.  相似文献   

2.
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.Key words: immunoglobulin gamma antibody, methionine sulfoxide, oxidation, photo-oxidation, methionine sulfoxide reductase  相似文献   

3.
Methionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR.  相似文献   

4.
Methionines can play an important role in modulating protein-protein interactions associated with intracellular signaling, and their reversible oxidation to form methionine sulfoxides [Met(O)] in calmodulin (CaM) and other signaling proteins has been suggested to couple cellular redox changes to protein functional changes through the action of methionine sulfoxide reductases (Msr). Prior measurements indicate the full recovery of target protein activation upon the stereospecific reduction of oxidized CaM by MsrA, where the formation of the S-stereoisomer of Met(O) selectively inhibits the CaM-dependent activation of the Ca-ATPase. However, the physiological substrates of MsrA remain unclear, as neither the binding specificities nor affinities of protein targets have been measured. To assess the specificity of binding and its possible importance in the maintenance of CaM function, we have measured the kinetics of repair and the binding affinity between oxidized CaM and MsrA. Reduction of Met(O) in fully oxidized CaM by MsrA is sensitive to the protein fold, as repair of the intact protein is incomplete, with >6 Met(O) remaining in each CaM following MsrA reduction. In contrast, following proteolytic digestion, MsrA is able to fully reduce one-half of the oxidized methionines, indicating that surface-accessible Met(O) within folded proteins need not be substrates for MsrA repair. Mutation of the active site (i.e., C72S) in MsrA permitted equilibrium-binding measurements using both ensemble and single-molecule fluorescence correlation spectroscopy measurements. We observe cooperative binding of two MsrA to each CaMox with an apparent affinity (K = 70 +/- 10 nM) that is 3 orders of magnitude greater than the Michaelis constant (KM = 68 +/- 4 microM). The high-affinity and cooperative interaction between MsrA and CaMox suggests an important regulatory role of MsrA in the binding and reduction of Met(O) in functionally sensitive proteins, such that multiple MsrA proteins are recruited to simultaneously bind and reduce Met(O) in highly oxidized proteins. Given the suggested role of Met(O) in modulating reversible binding interactions between proteins associated with cellular signaling, these results indicate an ability of MsrA to selectively reduce Met(O) within highly surface-accessible sequences to maintain cellular function as part of an adaptive response to oxidative stress.  相似文献   

5.
Methionine (Met) residues are present in most proteins. However, this sulfur-containing amino acid is highly susceptible to oxidation. In cells, the resulting Met sulfoxides are reduced back to Met by stereospecific reductases MsrA and MsrB. Reversible Met oxidation occurs even in the absence of stress, is elevated during aging and disease, but is notoriously difficult to monitor. In this work, we computationally identified natural Met-rich proteins (MRPs) and characterized three such proteins containing 21-33% Met residues. Oxidation of multiple Met residues in MRPs with H(2)O(2) and reduction of Met sulfoxides with MsrA/MsrB dramatically influenced the mobility of these proteins on polyacrylamide gels and could be monitored by simple SDS-PAGE. We further prepared antibodies enriched for reduced and Met sulfoxide forms of these proteins and used them to monitor Met oxidation and reduction by immunoblot assays. We describe applications of these reagents for the analysis of MsrA and MsrB functions, as well as the development of the assay for high-throughput analysis of their activities. We also show that all Met sulfoxide residues in an MRP can be reduced by MsrA and MsrB. Furthermore, we prepared a selenomethionine form of an MRP and found that selenomethionine selenoxide residues can be efficiently reduced nonenzymatically by glutathione and other thiol compounds. Selenomethionine selenoxide residues were not recognized by antibodies specific for the Met sulfoxide form of an MRP. These findings, reagents, assays, and approaches should facilitate research and applications in the area of Met sulfoxide reduction, oxidative stress, and aging.  相似文献   

6.
Investigation of human and bovine lenses has demonstrated the presence of a methionine sulfoxide (Met(O)) peptide reductase activity. The reductase can use either dithiothreitol or thioredoxin but not glutathione as a reducing agent. The enzyme is present primarily in the water soluble fraction. The highest specific activity is in the outer epithelial layer with decreasing activity in the inner layers of the tissue. The known high level of methionine sulfoxide residues in cataractous lens protein is not due to a decreased level of Met (O)-peptide reductase itself since a comparison of normal and cataractous human lenses showed no statistically significant decrease in reductase activity in the cataract population. However, it is not known whether the reducing system for Met (O)-peptide reductase (probably the thioredoxin system) is deficient in cataractous lenses.  相似文献   

7.
根瘤菌在侵染豆科植物过程中会受到活性氧的氧化胁迫,含甲硫氨酸的蛋白质易被氧化成甲硫氨酸亚砜导致蛋白结构和功能改变,甲硫氨酸亚砜还原酶(methionine sulfoxide reductases, Msrs)能将甲硫氨酸亚砜还原成甲硫氨酸,恢复蛋白的结构和功能。前期在华癸中慢生根瘤菌(Mesorhizobium huakuii) 7653R基因组中发现有4个Msrs和抗氧化压力密切相关,但其作用机制仍不清楚。【目的】通过筛选4个Msrs的相互作用底物,为阐明4个Msrs在M. huakuii 7653R中的作用机制提供证据。【方法】按照甲硫氨酸含量由高到低统计M. huakuii 7653R中所有蛋白的分布情况;利用蛋白互作网站预测获得4个Msrs的候选互作底物,将预测互作底物进行功能注释基因本体(gene ontology, GO)分析和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)代谢通路分析;通过细菌双杂交初步验证它们之间的相互作用。【结果】甲硫氨酸含量百分数分布基本呈正态分布形式,位于中间百分数的蛋白最多,位于两边的蛋白较少;筛选获得有6个抗氧化酶和6个转录调控因子是4个Msrs的候选互作底物;细菌双杂交显示,有2个抗氧化酶和5个转录调控因子确实和4个Msrs存在不同程度的相互作用。【结论】为阐明Msrs在根瘤菌M. huakuii 7653R中抵抗氧化压力的作用机制提供了证据,为揭示根瘤菌抵抗活性氧提供了新的思路和方向。  相似文献   

8.
Kim Y  Kwak GH  Lee C  Kim HY 《BMB reports》2011,44(10):669-673
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.  相似文献   

9.
Methionine sulfoxide reductase A overexpressing WI-38 SV40 human fibroblasts have been previously shown to exhibit higher resistance to oxidative stress by decreasing intracellular reactive oxygen species content and oxidative damage to proteins [C.R. Picot, I. Petropoulos, M. Perichon, M. Moreau, C. Nizard, B. Friguet, Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H(2)O(2)-mediated oxidative stress, Free Radic Biol Med 39 (2005) 1332-1341]. In order to get further insight into the molecular mechanisms underlying this resistance to oxidative stress, proteins that are differentially expressed in methionine sulfoxide reductase A overexpressing cells were identified by 2D gel and Western blot quantitative analyses. Five proteins were shown to be differentially expressed and were identified by mass spectrometry, some of them were related to either cellular protection against oxidative stress, apoptosis or premature ageing.  相似文献   

10.

Background  

Methionine Sulfoxide Reductase A (MsrA), an enzyme in the Msr gene family, is important in the cellular anti-oxidative stress defense mechanism. It acts by reducing the oxidized methionine sulfoxide in proteins back to sulfide and by reducing the cellular level of reactive oxygen species. MsrA, the only enzyme in the Msr gene family that can reduce the S-form epimers of methionine sulfoxide, has been located in different cellular compartments including mitochondria, cytosol and nuclei of various cell lines.  相似文献   

11.
It is known that Escherichia coli methionine mutants can grow on both enantiomers of methionine sulfoxide (met(o)), i.e., met-R-(o) or met-S-(o), indicating the presence of enzymes in E. coli that can reduce each of these enantiomers to methionine (met). Previous studies have identified two members of the methionine sulfoxide reductase (Msr) family of enzymes, MsrA and fSMsr, that could reduce free met-S-(o), but the reduction of free met-R-(o) to met has not been elucidated. One possible candidate is MsrB which is known to reduce met-R-(o) in proteins to met. However, free met-R-(o) is a very poor substrate for MsrB and the level of MsrB activity in E. coli extracts is very low. A new member of the Msr family (fRMsr) has been identified in E. coli extracts that reduces free met-R-(o) to met. Partial purification of FRMsr has been obtained using extracts from an MsrA/MsrB double mutant of E. coli.  相似文献   

12.
Two types of methionine (Met) sulfoxide reductases (Msr) catalyze the reduction of Met sulfoxide (MetSO) back to Met. MsrA, well characterized in plants, exhibits an activity restricted to the Met-S-SO-enantiomer. Recently, a new type of Msr enzyme, called MsrB, has been identified in various organisms and shown to catalytically reduce the R-enantiomer of MetSO. In plants, very little information is available about MsrB and we focused our attention on Arabidopsis (Arabidopsis thaliana) MsrB proteins. Searching Arabidopsis genome databases, we have identified nine open reading frames encoding proteins closely related to MsrB proteins from bacteria and animal cells. We then analyzed the activity and abundance of the two chloroplastic MsrB proteins, MsrB1 and MsrB2. Both enzymes exhibit an absolute R-stereospecificity for MetSO and a higher catalytic efficiency when using protein-bound MetSO as a substrate than when using free MetSO. Interestingly, we observed that MsrB2 is reduced by thioredoxin, whereas MsrB1 is not. This feature of MsrB1 could result from the lack of the catalytical cysteine (Cys) corresponding to Cys-63 in Escherichia coli MsrB that is involved in the regeneration of Cys-117 through the formation of an intramolecular disulfide bridge followed by thioredoxin reduction. We investigated the abundance of plastidial MsrA and B in response to abiotic (water stress, photooxidative treatment) and biotic (rust fungus) stresses and we observed that MsrA and B protein levels increase in response to the photooxidative treatment. The possible role of plastidic MsrB in the tolerance to oxidative damage is discussed.  相似文献   

13.
14.
Intraphagocytic survival of Salmonella Typhimurium (ST) depends (at least in part) upon its ability to repair oxidant-damaged macromolecules. Met residues either free or in protein bound form are highly susceptible to phagocyte-generated oxidants. Oxidation of Mets leads to Met-SO formation, consequently loss of protein functions that results in cell death. Methionine sulfoxide reductase (Msr) reductively repairs Met-SO to Met in the presence of thioredoxin (trx) and thioredoxin reductase (trxR). Earlier we reported that methionine sulfoxide reductase A (msrA) gene deletion strain of ST suffered oxidative stress.[1 Trivedi, R.N.; Agarwal, P.; Kumawat, M.; Pesingi, P.K.; Gupta, V.K.; Goswami, T.K.; Mahawar, M. Methionine Sulfoxide Reductase A (MsrA) Contributes to Salmonella Typhimurium Survival Against Oxidative Attack of Neutrophils. Immunobiology 2015, 220(12), 13221327.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]] Thioredoxin system of ST comprises of two thioredoxins (trxA and trxC) and one thioredoxin reductase (trxB). Preferred trx utilized in MsrA-mediated repair of Met-SO is not known. In current study, we cloned, expressed, and purified ST TrxA, TrxB, TrxC, and MsrA in recombinant forms. The migration of TrxA, TrxB, TrxC, and MsrA proteins was approximately 10, 36, 16, and 26?kDa on SDS-gels. The nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-linked reductase assays interpreted that MsrA utilized two times more NADPH for the reduction of S-methyl p-tolyl sulfoxide when TrxA was included in the assays as compared to TrxC.  相似文献   

15.
A simple and rapid assay has been developed to measure the enzymatic activity of peptide methionine sulfoxide reductase. The assay is based on the reduction of labeled N-acetylmethionine sulfoxide to N-acetylmethionine. The N-acetylmethionine can be separated from the substrate by extraction into ethyl acetate.  相似文献   

16.
There have been insufficient kinetic data that enable a direct comparison between free and peptide methionine sulfoxide reductase activities of either MsrB or MsrA. In this study, we determined the kinetic parameters of mammalian and yeast MsrBs and MsrAs for the reduction of both free methionine sulfoxide (Met-O) and peptidyl Met-O under the same assay conditions. Catalytic efficiency of mammalian and yeast MsrBs towards free Met-O was >2000-fold lower than that of yeast fRMsr, which is specific for free Met-R-O. The ratio of free to peptide Msr activity in MsrBs was 1:20-40. In contrast, mammalian and yeast MsrAs reduced free Met-O much more efficiently than MsrBs. Their k(cat) values were 40-500-fold greater than those of the corresponding MsrBs. The ratio of free to peptide Msr activity was 1:0.8 in yeast MsrA, indicating that this enzyme can reduce free Met-O as efficiently as peptidyl Met-O. In addition, we analyzed the in vivo free Msr activities of MsrBs and MsrAs in yeast cells using a growth complementation assay. Mammalian and yeast MsrBs, as well as the corresponding MsrAs, had apparent in vivo free Msr activities. The in vivo free Msr activities of MsrBs and MsrAs agreed with their in vitro activities.  相似文献   

17.
Biochemistry of methionine sulfoxide residues in proteins   总被引:6,自引:0,他引:6  
The oxidation of methionine to methionine sulfoxide constitutes one of the many post-translational modifications that proteins undergo. This non-enzymatic reaction has been shown to occur both in vivo and in vitro, and has been associated with the loss of biological activity in a wide variety of proteins and peptides. The presence of methionine sulfoxide residues in proteins is implicated in a variety of pathological conditions. An enzyme that is present in all organisms tested specifically catalyzes the reduction of the methionine sulfoxide residues in proteins. The physiological reductant for this enzyme appears to be thioredoxin.  相似文献   

18.
19.
Methionine sulfoxide reductase A has long been known to reduce S-methionine sulfoxide, both as a free amino acid and within proteins. Recently the enzyme was shown to be bidirectional, capable of oxidizing free methionine and methionine in proteins to S-methionine sulfoxide. A feasible mechanism for controlling the directionality has been proposed, raising the possibility that reversible oxidation and reduction of methionine residues within proteins is a redox-based mechanism for cellular regulation. We undertook studies aimed at identifying proteins that are subject to site-specific, stereospecific oxidation and reduction of methionine residues. We found that calmodulin, which has nine methionine residues, is such a substrate for methionine sulfoxide reductase A. When calmodulin is in its calcium-bound form, Met77 is oxidized to S-methionine sulfoxide by methionine sulfoxide reductase A. When methionine sulfoxide reductase A operates in the reducing direction, the oxidized calmodulin is fully reduced back to its native form. We conclude that reversible covalent modification of Met77 may regulate the interaction of calmodulin with one or more of its many targets.  相似文献   

20.
Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号