首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pure nickel electrodes can be used as biosensors especially for sensing and estimating acetylcholine neurotransmitter. In the present work, a good electrochemical sensor was developed by electroplating nano nickel oxide reinforced nickel on graphite substrate. The morphology of the working electrode surface was studied by using a scanning electron microscope (SEM). The electrochemical and biological performance of the modified electrode was characterized by polarization studies in different media. The present modified electrode showed good sensing performance with a response time as low as 8s during sensing and estimation of acetylcholine. The sensitivity of the modified electrode was 34.88 microA/(microM cm(2)).  相似文献   

3.
4.
Freeman JL  Garcia D  Kim D  Hopf A  Salt DE 《Plant physiology》2005,137(3):1082-1091
Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus.  相似文献   

5.
The reduction of NiX2(PCy3)2 (X = Cl, Br; PCy3 = tricyclohexylphosphine) in toluene with sodium sand under argon affords [NiX(PCy3)2]2 or Ni(PCy3)3. In the same way starting from NiX2P2 [X = Cl, Br; P = P(C2H5)3, P(CH2CH2CH2CH3)3, P(C2H5)2 C6H5] the tetracoordinate Ni(0) complexes NiP4 are obtained. These give NiP3(N2) under nitrogen. The electronic spectra of Ni(0) and Ni(I) complexes, both in the solid state and solution, are reported.  相似文献   

6.
Although microorganisms have the potential to reduce metals, products with elementary forms are unusual. In the present study, a strain of Pseudomonas sp. MBR was tested for its ability to reduce metal ions to their elementary forms coupled to biomineralization under aerobic conditions. The Pseudomonas sp. MBR strain was able to reduce metals such as Fe(III), Mn(II), Cu(II), Ni(II), Cd(II), Co(II), Al(III), Se(IV), and Te(IV) as electron acceptors to elementary forms using citrate, lactate, pyruvate, succinate, malate, glucose, or ethanol as electron donors. Growth and reduction during biomineralization occurred within the pH range of 6.0 to 11.0 and temperature range of 4 to 40 °C, with an optimum growth temperature of 28 °C. The resistance of Ni(II) varied from 0.5 to 5 mM. Ni(II) reduction was still observed when nitrate was present in addition to oxygen as a potential electron acceptor. The Ni(II) reduction efficiency was related with the molar ratio of the electron donor to Ni(II). Unlike other dissimilatory metal-reducing bacteria, which oxidizes organic matter with Fe(III) or Mn(IV) as the sole electron acceptor coupled to energy production under facultative anaerobic conditions, this strain used oxygen as an electron acceptor combined with metal reduction. The aerobic metal reduction may relate to a co-metabolic reduction. Transmission electron microscopy images demonstrated that the cells had the ability to accumulate heavy metals, and that the detoxicity mechanism was intracellular metal reduction. These results suggested that the use of Pseudomonas sp. MBR could be promising for toxic heavy metal bioremediation and biological metallurgy.  相似文献   

7.
Summary The Ni2+ resistance of Thiobacillus ferrooxidans was enhanced by repeated culturing in medium containing Ni2+ and gradually increasing the Ni2+ concentration. The extraction of nickel sulfide was enhanced by the adapted strain following the direct leaching mechanism of the microorganism.  相似文献   

8.
Worldwide more than 400 plant species are now known that hyperaccumulate various trace metals (Cd, Co, Cu, Mn, Ni, and Zn), metalloids (As) and nonmetals (Se) in their shoots. Of these, almost one-quarter are Brassicaceae family members, including numerous Thlaspi species that hyperaccumulate Ni up to 3% of there shoot dry weight. We observed that concentrations of glutathione, Cys, and O-acetyl-l-serine (OAS), in shoot tissue, are strongly correlated with the ability to hyperaccumulate Ni in various Thlaspi hyperaccumulators collected from serpentine soils, including Thlaspi goesingense, T. oxyceras, and T. rosulare, and nonaccumulator relatives, including T. perfoliatum, T. arvense, and Arabidopsis thaliana. Further analysis of the Austrian Ni hyperaccumulator T. goesingense revealed that the high concentrations of OAS, Cys, and GSH observed in this hyperaccumulator coincide with constitutively high activity of both serine acetyltransferase (SAT) and glutathione reductase. SAT catalyzes the acetylation of l-Ser to produce OAS, which acts as both a key positive regulator of sulfur assimilation and forms the carbon skeleton for Cys biosynthesis. These changes in Cys and GSH metabolism also coincide with the ability of T. goesingense to both hyperaccumulate Ni and resist its damaging oxidative effects. Overproduction of T. goesingense SAT in the nonaccumulator Brassicaceae family member Arabidopsis was found to cause accumulation of OAS, Cys, and glutathione, mimicking the biochemical changes observed in the Ni hyperaccumulators. In these transgenic Arabidopsis, glutathione concentrations strongly correlate with increased resistance to both the growth inhibitory and oxidative stress induced effects of Ni. Taken together, such evidence supports our conclusion that elevated GSH concentrations, driven by constitutively elevated SAT activity, are involved in conferring tolerance to Ni-induced oxidative stress in Thlaspi Ni hyperaccumulators.  相似文献   

9.
A review of the molecular mechanisms of nickel carcinogenesis has been compiled. This work is based upon approximately 20 years of research conducted in my laboratory. Molecular mechanisms of nickel carcinogenesis are considered from the pointofview of the uptake of nickel, both soluble and insoluble particles in cells, its dissolution and its effects on heterochromatin. Molecular mechanisms by which nickel induces gene silencing in cells by DNA hypermethylation in mammalian cells and by inhibiting histone acetylation in yeast cells are also discussed.  相似文献   

10.
Bioremediation of nickel by chlorophycean bioremediator, Chlorococcum hemicolum was investigated. The growth rates at various concentrations of Ni2+ were assessed in terms of protein level and 12 mg L(-1) of the Ni2+ is the tolerance limit (46.76% level of growth kinetics). Absorption/adsorption kinetics was estimated after 240 h of Ni2+ treatments. Absorptions were higher than adsorption with maximum accumulation factor (AF) of 1.37. Ni2+ concentration and absorption were linearly related (r=0.98; p>0.01). Other biochemical parameters like total sugar, chlorophyll and carotenoids were also quantified to correlate the state of metabolism and these exhibited reduction due to heavy metal stress.  相似文献   

11.
The oxidative chemistry of nickel(II) porphyrins is reviewed. Whether electron abstraction occurs from the metal to yield Ni(III) or from the porphyrin to yield Ni(II) pi cation radicals is discussed in terms of the relative energy levels of the metal and porphyrin orbitals. The effects of axial ligands in further modulating this ordering as well as the orbital occupancy of Ni(III) are also reviewed. Structural considerations, based on existing stereochemical data for Ni(I), high spin Ni(II) and related Ni(III) tetraaza complexes, are used to predict the metrics of Ni(III) porphyrins for which no structural data are available.  相似文献   

12.
Costa M 《Biological chemistry》2002,383(6):961-967
A brief review of the molecular mechanisms of nickel carcinogenesis is presented. Molecular mechanisms of nickel carcinogenesis are considered from the point-of-view of nickel-induced gene silencing by DNA hypermethylation in mammalian cells and by its ability to inhibit histone acetylation. Model systems designed to study the molecular mechanism of gene silencing are discussed.  相似文献   

13.
Nickel compounds are known human carcinogens, but the exact molecular mechanisms of nickel carcinogenesis are not known. Due to their abundance, histones are likely targets for Ni(II) ions among nuclear macromolecules. This paper reviews our recent studies of peptide and protein models of Ni(II) binding to histones. The results allowed us to propose several mechanisms of Ni(II)-inflicted damage, including nucleobase oxidation and sequence-specific histone hydrolysis. Quantitative estimations of Ni(II) speciation, based on these studies, support the likelihood of Ni(II) binding to histones in vivo, and the protective role of high levels of glutathione. These calculations indicate the importance of histidine in the intracellular Ni(II) speciation.  相似文献   

14.
The original data of Weiss and Forrer on nickel are reanalyzed with the aim to obtain a simple empirical relation between the spontaneous magnetization and the temperature both below and above the Curie temperature. A simple relation between the spontaneous magnetization and the temperature is needed to separate easily between the ferromagnetic and the paramagnetic region in the plane given by temperature and field strength, needed for a comprehensive treatment of the magnetocaloric effect (compare J. Biol. Phys. 9, 27 (1981). Various methods of extrapolating to zero magnetic field strength are discussed and used to obtain specified values for the spontaneous magnetization at various temperatures. Starting with a simple expression of cooperativity among elements it is shown that a sufficiently good fit of models to the given data is only obtained with the assumption of three types of cooperativity differing in the intensity of coupling. This intensity of coupling is signified by the magnitude of the exponent in the independent variable (temperature).  相似文献   

15.
The original data of Weiss and Forrer are reanalyzed with the aim to obtain a precise relation between the observed temperature rise and the magnetic field strength at temperatures both above and below the Curie temperature. The application of nonlinear least squares analysis reveals that a simple dependence of the temperature rise upon the magnetic field strength does not give a good fit. A more complex expression is therefore used, employing two different exponents (as adjustable parameters) for the magnetic field strength. The exponent 2, required in the original theory of Weiss, appears only in the paramagnetic region, while exponent 3 applies in the ferromagnetic region. The second exponent, valid at high fields, is close to 1 in the ferromagnetic region and near 0.7 in the paramagnetic region (lower values are obtained for some temperatures, but are shown to be of low significance).  相似文献   

16.
This study evaluates the immune response to ingestion of 10 mg of nickel (Ni) (as Ni sulphate) in 19 young non-atopic Ni-sensitised or 9 non-allergic women (group A). After Ni ingestion at 8 a.m, non-allergic and 12 Ni-sensitised women (group B) were non-symptomatic, while 7 Ni-sensitised women (group C) showed a flare up of urticaria and/or eczema. Serum and urine Ni were greatly lower before Ni administration than after 4 and 24 hours, without difference among the 3 groups. Before treatment, group B and C showed higher values of blood CD19+ and CD5--CD19+ cells than group A, while group C showed higher serum interleukin (IL) 2 and lower serum IL-5. Four hours after Ni ingestion, group C showed significant increase in serum IL-5. Twenty-four hours after treatment, group A showed a significant reduction in blood CD4+-CD45RO- "virgin" cells and an increase of CD8+ lymphocytes, while group C showed a marked decrease in total blood lymphocytes and CD3+, CD4+-CD45RO-, CD4+-CD45RO+, CD8+, CD19+ and CD5--CD19+ cell subsets. These data may be explained with migration of lymphocytes in tissues with a Th0-like immune response, as shown by the elevated serum IL-2 and the increase of serum IL-5 during the test.  相似文献   

17.
Carcinogenic effect of nickel compounds   总被引:21,自引:0,他引:21  
  相似文献   

18.
19.

Purpose

To comply with the effluent regulation of boron, replacement of boric acid with citric acid in a nickel electroplating bath is proposed. Although the bath avoids the discharge of boron, it increases the discharge of nickel owing to the chelating effect of citric acid, which disturbs the wastewater treatment. To balance this trade-off, the environmental impacts of a traditional nickel plating process (the Watts bath) and the citrate bath must be compared by life cycle assessment.

Methods

The life cycle impact assessment method was LIME2. To estimate the trade-off between boron and nickel discharge into wastewater, the characterization and damage factors on human toxicity and ecotoxicity were calculated. The processes were then compared using data from actual processes. The functional unit was “plating per 1-kg part.” However, the plating efficiency depends on the type, shape, and surface area of the part. The data of the citrate bath were modeled. In the modeling, the amounts of nickel chloride and nickel sulfate in the citrate bath were based on the Watts bath.

Results and discussion

In comparison with other chemicals, the calculated characterization and damage factors of boron and nickel were found to be reasonable. The integration results revealed that the citrate bath exerted greater environmental impact than the Watts bath. Although the Watts bath involved more environmentally damaging processes than the citrate bath, the sum of these impacts was much smaller than the impact of effluent from the citrate bath. Moreover, the environmental impact of effluent can be significantly reduced by flocculants, with almost no additional environmental impact incurred by the increased sludge.

Conclusions

The newly developed citrate plating bath exerts higher environmental impact than the traditional Watts bath because the environmental impacts of the release of nickel chelated with citric acid exceed the reduced boron emissions. Therefore, there is a trade-off between the two methods. When installing the citrate bath, the wastewater treatment must be altered to reduce the nickel emissions.
  相似文献   

20.
Rats were treated with zinc chloride and with nickel acetate 2 weeks prior to immunization withE. coli bacteriophageT-1; antibody titers to bacteriophageT-1 were reduced 500–2600-fold in metal-treated rats compared to titers found in untreated control animals. Examination of the effect of metal treatment on lymphocyte blastogenesis revealed a significant reduction in the number of blast cells in the spleens of metal-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号