首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The one-point joint linking the antennula with the carapace in Panulirus argus is described. A strand organ is activated when the antennula is moved in the vertical plane. Its structure, function, and regeneration after severance were investigated.The implications of this system are discussed, starting from the findings that the strand organ counteracts the statocyst (located in the antennula) in such a way that gravity reactions occur only if the body changes its position with respect to gravity.The work was supported by grants from the Max-Planck-Gesellschaft (Hedwig Schöne), the National Science Foundation of the U.S.A., the American Philosophical Society, and the Cecil Montgomery-Moore Fellowship of the Bermuda Biological Station. Contribution No. 836 of the Bermuda Biological Station  相似文献   

2.
In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.  相似文献   

3.
Summary Twenty nine harpacticoid copepods are new to Bermuda and significant changes are noted in the distribution records of several species. Six temporary groups are organized to separate the copepods on their apparent zoogeographical ranges: (1) cosmopolitan, (2) warm temperate-tropical, (3) North Atlantic, (4) North Atlantic-Mediterranean, (5) Endemic to Bermuda and (6) uncertain. These six artificial groups do not necessarily correspond to the standard zoogeographical provinces. Endemism of the Bermudian harpacticoids is similar to the rates reported and predicted for other fauna on North Atlantic Islands. Low endemic rates probably reflect changing environmental conditions during the late Pleistocene.Three distinct harpacticoid isocommunities are reported. The associations are similar to harpacticoid assemblages found in similar sediment types in different parts of the world. All three associations are in agreement with Thorson's (1957) concept of the parallel level-bottom community.Contribution No. 78 from the Center for Marine and Environmental Studies, Lehigh University, Bethlehem, Pa., U.S.A.-Contribution No. 467 from the Bermuda Biological Station, St. George's West, Bermuda.  相似文献   

4.
The immunohistochemical localization of connexin (Cx) 43 and Cx 45 in the musculature of the rat small intestine was studied at the ultrastructural level, with special reference to the interstitial cells of Cajal in the deep muscular plexus region (ICC-DMP). Cx 43 was localized at gap junctions formed between every group of cells, i.e., smooth muscle cell~smooth muscle cell, smooth muscle cell--ICC-DMP and ICC-DMP--ICC-DMP. In contrast, Cx 45 immunoreactivity was only detected at gap junctions between ICC-DMP--ICC-DMP. Since different types of Cx molecules have different properties for electrical and chemical coupling of cells, it is suggested that the homotypic network of ICC-DMP connected with Cx 45 gap junctions may function as an independent compartment segregated from the whole cellular network including the smooth muscle cells connected with Cx 43 gap junctions. It is further speculated that the ICC-DMP of the rat small intestine communicate with each other and with smooth muscle cells via the passage of messenger molecules through Cx 43, but they may use an additional mechanism, as yet unknown, for communications restricted to other ICC-DMP.  相似文献   

5.
肌细胞发育过程中间隙连接的变化   总被引:2,自引:1,他引:1  
The appearance and changes of gap junctions during the development of striated muscle cells of Cynops orientalis have been studied by paraffin section, ultrathin-section and freeze-etching techniques. Gap junctions first appear between the somitic mesoderm cells in the late gastrula. A marked increase of the number of gap junctions occurs at the end of gastrulation. The number of gap junctions remains at a high level from neural plate stage up to nasal pit stage. After the stage of muscle contraction, the number of gap junctions decreases. Gap junctions do not disappear until muscle cells have attained their final differentiation and neuromuscular junctions have fully developed. The changes of size of gap junctions parallel with the changes in number. In addition, the number and size of gap junctions are both at the high level before cell fusion. Therefore, it is possible to conclude that cell communication is closely correlated with the development of striated muscle cells. The role of communications in cell determination and differentiation and in cell fusion of muscle cells are discussed.  相似文献   

6.
Summary The distribution of gap junctions (nexuses) in various parts of the small and large intestines of the guinea-pig was studied using the freeze-fracture technique and in thin sections. The percentage area of smooth muscle cell surface occupied by gap junctions varies from 0.50% in the circular muscle of the duodenum to zero in the longitudinal muscle of the ileum. In the circular muscle of the jejunum and ileum the area occupied by nexuses is 0.22% (or about 11 m2 per cell). The sizes of junctions range from less than 0.01 m2 to 0.20 m2, with two-thirds of them being smaller than 0.05 m2. In the colon, gap junctions are rare, very small and confined to the circular muscle layer. Even the smallest aggregates of intramembrane particles correspond to areas of close apposition between the membranes of adjacent cells; it is therefore justified to interpret them as being gap junctions. Some gap junctions are formed between a smooth muscle cell and an interstitial cell. Gap junctions are not found in the longitudinal muscle of the small intestine; this is in sharp contrast to the abundance of gap junctions in the adjacent circular layer.In the small intestine of cats and rabbits, gap junctions are abundant in the circular muscle layer, whereas they are very small in size and very few in number in the longitudinal muscle layer.The authors wish to thank Mr Peter Trigg and Miss Eva Franke for help and support. This work was supported by grants from the Medical Research Council and the Central Research Fund of the University of London  相似文献   

7.
Summary The morphology and ultrastructure of the lateral body integument of the leptocephalus, glass eel, pigmented elver, and adult stages of the American eel, Anguilla rostrata, were examined with light and electron microscopy. The integument consists of an epidermis separated by a basal lamina from the underlying dermis. Three cell types are present in the epidermis in all stages. Filament-containing cells, which are the principal structural cell type, are increasingly numerous at each stage. Mucous cells, which secrete the mucous that compose the mucous surface coat, are also more numerous in each subsequent stage and are more numerous in the anterior lateral body epidermis than in the posterior lateral body epidermis of the adult. Club cells, whose function is unknown, are most numerous in the glass eel and pigmented elver. Chloride cells are common in the leptocephalus which is marine and infrequent in the glass eel. They are not present in the pigmented elver and adult which inhabit estuaries and fresh-water. Lymphocytes and melanocytes are also present in some stages. The dermis comprises two layers: a layer of collagenous lamellae, the stratum compactum, and an underlying layer of loose connective tissue, the stratum spongiosum.There is a progressive increase in epidermal thickness at each stage which is paralleled by an increase in the thickness of the stratum compactum. Rudimentary scales are present in the dermis of the adult. The increase in the number of epidermal filament-containing cells, epidermal thickness and stratum compactum thickness is correlated with an increased need for protection from abrasion and mechanical damage as the eel moves from a pelagic, oceanic habitat to a benthic, freshwater habitat. The increase in mucous cell numbers is likewise correlated with an increased need for the protective and anti-bacterial action of the mucous surface coat in the freshwater environment.This investigation was supported by NIH research grant NS-11276 from National Institute of Neurological Diseases and Stroke to Dr. J.D. McCleave and by N.S.F. Grant GD 38933 to the Bermuda Biological Station, St. Georges West, Bermuda. Bermuda Biological Station Contribution No. 668  相似文献   

8.
Summary Ipsilateral antennular dysfunction resulting from total unilateral eyestalk ablation in spiny lobsters does not occur when visual input is restricted by an opaque cap over one eyestalk, or when optic ganglia alone (eg. lamina ganglionaris, medulla externa, medulla interna) are removed. Antennular dysfunction appears only when connections between the most proximal of the four eyestalk ganglia, the medulla terminalis, and the remainder of the cerebral ganglia (brain) are interrupted. We conclude that neural processing of olfactory input from the antennule involves structures in the medulla terminalis.Contribution number 430 from the Bermuda Biological Station for Research, Inc. This work was supported by USPHS Grant NB-06017.  相似文献   

9.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

10.
Gap junctions were regularly seen in thin sections of canine tracheal smooth muscle incubated in vitro. Their number was increased in tissued exposed in vitro to either of two potassium conductance blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), and at the same time the muscles became mechanically active, with spontaneous contractions. The presence of gap junctions in this smooth muscle may provide one basis for cell-to-cell coupling, and their increase after TEA- and 4-AP-treatment could account for a decreased junctional resistance between cells, contributing to a longer space constant. However, an increase in gap junctions was not sufficient to change the behavior of trachealis smooth muscle from multiunit to single-unit type. Gap junctions in increased numbers persisted after washout of 4- AP, which caused inhibition of spontaneous contractions, and despite inhibition of the contractile effects of 4-AP by atropine. The rapid induction of gap junction formation was not dependent on de novo synthesis of protein. The fact that the number of gap junctions can be increased by chemical agents has important implications for control of their formation and provides a tool for analysis fo their role in cell- to-cell coupling.  相似文献   

11.
1. Gap (communicating) junctions are plasma-membrane specializations of characteristic morphology that form transmembrane channels allowing direct communication between cells. Their preparation is described starting from mouse liver plasma membranes and the constituent polypeptides are deduced. 2. Gap junctions co-purify with collagen fibres when the plasma-membrane residues insoluble in N-dodecyl sarcosinate are fractionated on sucrose gradients. Sucrose-density perturbation by relipidation of isolated gap junctions or the use of urea to remove non-junctional membranes both failed to diminish the collagen content of fractions. 3. Removal of collagen by treatment with purified collagenase preparations yielded morphologically satisfactory gap-junction fractions. Analysis by polyacrylamide-gel electrophoresis of the polypeptides present in gap junctions prepared by procedures omitting or using collagenases indicated two non-glycosylated polypeptides, a major component of apparent mol.wt. 38000 and a minor 40000-mol.wt. component. These two polypeptides were also present in plasma membranes and the intermediate fractions. 4. Proteolysis of the gap-junction polypeptides yielding components of mol.wt. 34000, 25000 and below 20000 occurred when iodinated gap junctions were subject to prolonged collagenase treatment, thus explaining the variable polypeptide composition of gap junctions reported by others. 5. The morphological properties of the isolated gap junctions prepared by the various procedures are described.  相似文献   

12.
Summary An ultrastructural investigation of the gametes and their interaction during the early events of fertilization in molluscs has been performed. A gamete binding event involving large numbers of sperm has been identified and examined in detail. The surface of the oocyte is projected into numerous microvilli which extend through the vitelline envelope. Tufts of fibrillar material radiate from the tips of these microvilli, forming a layer external to the vitelline envelope. The acrosomal vesicle of the mature spermatozoon contains two major components, which function differently during fertilization. The vesicle is indented at its adnuclear surface, constituting a preformed acrosomal tubule. This tubule does not elongate during the acrosome reaction. Completion of the reaction results in the formation of an extracellular coat, derived from one component of the acrosomal vesicle, on the anterior surface of the sperm. Sperm-egg binding is accomplished by an association of the extracellular coat on the reacted sperm and the fibrous tufts on the tips of the microvilli of the oocyte. Evidence that gamete membrane fusion occurs by fusion of the acrosomal tubule and a microvillus is presented. These observations provide a generalized pattern of molluscan fertilization.The assistance of Mr. B. Calloway in identifying and obtaining the organisms is gratefully acknowledged. This investigation was supported by NSF grants PCM 76-13459 and PCM 76-09654 and performed at the Bermuda Biological Station with instruments made available through the courtesy of Philips, Inc., DuPont-Sorvall, and L.K.B. Inc. Bermuda Biological Station Contribution No. 709  相似文献   

13.
Summary The plasma membranes of the tunicate heart exhibit an abundance of macular gap junctions distributed widely over the membrane surface. A study of these junctions by the freeze-etch technique was undertaken in an effort to elucidate the fine structure of this important membrane modification in a primitive heart. In cross or near-cross fractured junctions the junctional particles in contiguous membranes appear to be paired in register and to meet in the midline. In favorable face views, the junctional particles are seen to be disposed in hexagonal array. The individual particles display a distinct rosette-like substructure consistent with a six-membered ring of globular protein molecules clustered around a central channel. Similar junctional-type particles can be found in nonjunctional areas of membrane suggesting that the transport mechanism which they may represent is not restricted to the gap junction.Career Investigator of the American Heart AssociationWe wish to thank Dr. J.B. Jillett for use of the facilities of the Portobello Marine Biological Station; Mr. W.S. Bertaud, Physics and Engineering Laboratory, D.S.I.R., Lower Hutt, who kindly supervised the preparation of some of the freeze-etch replicas; Dr. R.H. Millar of the Dunstaffnage Marine Research Laboratory, Oban, Argyll, Scotland, who identified the tunicate used in the present (and previous) study; Prof. W.D. Trotter who made facilities in the Department of Anatomy, University of Otago Medical School, Dunedin, available to one of us (V.L.); and Mrs. S.M. O'Kane for excellent technical assistance. Generous support from the American Heart Association (to V.L.) and from the Medical Research Council of New Zealand (to D.G.R.) is gratefully acknowledged  相似文献   

14.
In the tunica muscularis of the gastrointestinal (GI) tract, gap junctions form low-resistance pathways between pacemaker cells known as interstitial cells of Cajal (ICCs) and between ICC and smooth muscle cells. Coupling via these junctions facilitates electrical slow-wave propagation and responses of smooth muscle to enteric motor nerves. Glycyrrhetinic acid (GA) has been shown to uncouple gap junctions, but previous studies have shown apparent nonspecific effects of GA in a variety of tissues. We tested the effects of GA using isometric force measurements, intracellular microelectrode recordings, the patch-clamp technique, and the spread of Lucifer yellow within cultured ICC networks. In murine small intestinal muscles, beta-GA (10 muM) decreased phasic contractions and depolarized resting membrane potential. Preincubation of GA inhibited the spread of Lucifer yellow, increased input resistance, and decreased cell capacitance in ICC networks, suggesting that GA uncoupled ICCs. In patch-clamp experiments of isolated jejunal myocytes, GA significantly decreased L-type Ca(2+) current in a dose-dependent manner without affecting the voltage dependence of this current. The IC(50) for Ca(2+) currents was 1.9 muM, which is lower than the concentrations used to block gap junctions. GA also significantly increased large-conductance Ca(2+)-activated K(+) currents but decreased net delayed rectifier K(+) currents, including 4-aminopyridine and tetraethylammonium-resistant currents. In conclusion, the reduction of phasic contractile activity of GI muscles by GA is likely a consequence of its inhibitory effects on gap junctions and voltage-dependent Ca(2+) currents. Membrane depolarization may be a consequence of uncoupling effects of GA on gap junctions between ICCs and smooth muscles and inhibition of K(+) conductances in smooth muscle cells.  相似文献   

15.
In early tailbud embryos of the axolotl (Ambystoma mexicanum), cells of the anterior myotomes begin to elongate and align along the longitudinal axis of the animal. Soon thereafter, gap junctions appear between the differentiating myotubes. These junctions occur between adjacent cells within a myotome (intramyotomal) and between the cells of adjacent myotomes which are separated from one another by narrow connective tissue septa (intermyotomal). The latter are found at the ends of the elongating cells where muscle-tendon insertion will occur and nerve-muscle synapses will form. The gap junctions are transient: They appear with the onset of myofibrillar formation at the time that nerve fibers enter the intermyotomal septa. The junctions last until the cells have differentiated into mature striated muscle cells and neuromuscular synapses are fully developed.These gap junctions may provide a means for the direct intercellular spread of electrical excitation between the differentiating muscle cells and so account for the observed myogenic contraction of myotomes. We also suggest that these junctions may form a means for cellular communication and interaction during the development of the axial musculature.  相似文献   

16.
Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junction proteins of the intercalated disk, yet both proteins were markedly downregulated after differentiation into myo-tubes. Similarly, differentiated skeletal muscle grafts in injured hearts had no detectable N-cadherin or connexin43; hence, electromechanical coupling did not occur after in vivo grafting. In contrast, when neonatal or adult cardiomyocytes were cocultured with skeletal muscle, approximately 10% of the skeletal myotubes contracted in synchrony with adjacent cardiomyocytes. Isoproterenol increased myotube contraction rates by 25% in coculture without affecting myotubes in monoculture, indicating the cardiomyocytes were the pacemakers. The gap junction inhibitor heptanol aborted myotube contractions but left spontaneous contractions of individual cardiomyocytes intact, suggesting myotubes were activated via gap junctions. Confocal microscopy revealed the expression of cadherin and connexin43 at junctions between myotubes and neonatal or adult cardiomyocytes in vitro. After microinjection, myotubes transferred dye to neonatal cardiomyocytes via gap junctions. Calcium imaging revealed synchronous calcium transients in cardiomyocytes and myotubes. Thus, cardiomyocytes can form electromechanical junctions with some skeletal myotubes in coculture and induce their synchronous contraction via gap junctions. Although the mechanism remains to be determined, if similar junctions could be induced in vivo, they might be sufficient to make skeletal muscle grafts beat synchronously with host myocardium.  相似文献   

17.
Summary The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with 20 mM NaOH or 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergentalkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).  相似文献   

18.
Summary Electron microscopy of both thin sections and freeze-fracture replicas has demonstrated the occurrence of gap junctions (nexuses) in the cardiac muscle cells of the lamprey. These gap junctions are identical in basic structure with those found in the mammalian heart. However, they are much smaller (less than 0.5 in diameter), and more irregularly distributed than the typical gap junction in the mammalian heart. These small gap junctions seem to provide a structural basis for the electrical coupling between cardiac muscle cells in the lower vertebrates.In addition, the well developed sarcoplasmic reticulum and subsurface cisternae, which contain an electron dense spheroidal cast, are frequently observed in the cardiac muscles of the lamprey.This work is supported by a research grant from the Ministry of Education, Japan  相似文献   

19.
Dendritic cells (DCs) in culture express at least connexin43, a protein subunit of gap junctions, and form gap junction channels, which could be important for T-cells activation. Here, we evaluated whether DCs express connexins in vivo and also to identify components of their microenvironment that regulate the functional expression of gap junctions. In vivo studies were performed in lymph nodes of mice under control conditions or after skeletal muscle damage. In double immunolabeling studies, connexin45 was frequently detected in DEC205(+) DCs in lymph nodes of control animals, whereas connexin43 was rarely found in DCs. However, connexin43 was upregulated in DCs after skeletal muscle damage. Upregulation of connexin43 gene expression by tissue damage was also confirmed in mice carrying a beta-galactosidase reporter gene in a connexin43 allele. The effect of several cytokines on the expression of functional gap junctions between cultured DCs was also tested. Under control conditions, cultured DCs did not communicate via gap junctions. However, after treatment with keratinocyte-conditioned medium or cytokine mixtures containing at least TNF-alpha and IL-1beta, they became transiently coupled through a pathway sensitive to octanol, a gap junction blocker. Cellular coupling induced by effective cytokine mixtures was prevented by IL-6. Single cytokines (TNF-alpha, IL-1beta, IFN-gamma, or IL-6) or other mixtures than the described above did not induce coupling via gap junctions. Increased levels of connexin43 and connexin45 protein and mRNA accompanied the appearance of cellular coupling. These studies provide demonstration of connexin expression and regulation by specific danger signals in DCs.  相似文献   

20.
In hamster cremaster muscle, it has been shown previously that contraction of skeletal muscle fibers underlying small groups of capillaries (modules) induces dilations that are proportional to metabolic rate in the two arteriolar generations upstream of the stimulated capillaries (Berg BR, Cohen KD, and Sarelius IH. Am J Physiol Heart Circ Physiol 272: H2693-H2700, 1997). These remote dilations were hypothesized to be transmitted via gap junctions and not perivascular nerves. In the present study, halothane (0.07%) blocked dilation in the module inflow arteriole, and dilation in the second arteriolar generation upstream, the branch arteriole, was blocked by both 600 mosM sucrose and halothane but not tetrodotoxin (2 microM). Dilations in both arterioles were not blocked by the gap junction uncoupler 18-beta-glycyrrhetinic acid (40 microM), and 80 mM KCl did not block dilation of the module inflow arteriole. These data implicate a gap junctional-mediated pathway insensitive to 18-beta-glycyrrhetinic acid in dilating the two arterioles upstream of the capillary module during "remote" muscle contraction. Dilation in the branch arteriole, but not the module inflow arteriole, was attenuated by 100 microM N(omega)-nitro-L-arginine. Thus selective contraction of muscle fibers underneath capillaries results in dilations in the upstream arterioles that have characteristics consistent with a signal that is transmitted along the vessel wall through gap junctions, i.e., a conducted vasodilation. The observed insensitivities to 18-beta-glycyrrhetinic acid, to KCl, and to N(omega)-nitro-L-arginine suggest, however, that there are multiple signaling pathways by which remote dilations can be initiated in these microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号