首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.  相似文献   

2.
Binding of EGF to cells expressing human EGF receptor stimulated rapid tyrosine phosphorylation of phospholipase C-II (PLC-II), as revealed by immunoblotting analysis with phosphotyrosine-specific antibodies. Tyrosine phosphorylation of PLC-II was stimulated by low physiological concentrations of EGF (1 nM), was quantitative, and was already maximal after a 30 sec incubation with 50 nM EGF at 37 degrees C. Interestingly, antibodies specific for PLC-II were able to coimmunoprecipitate the EGF receptor and antibodies against EGF receptor also coimmunoprecipitated PLC-II. According to this analysis, approximately 1% of EGF receptor molecules were associated with PLC-II molecules. The protein tyrosine kinase inhibitor tyrphostin RG50864, which blocks EGF-dependent cell proliferation, blocked EGF-induced tyrosine phosphorylation of PLC-II, its association with EGF receptor, and EGF-induced Ca2+ release. Hence, EGF-induced tyrosine phosphorylation of PLC-II may be a regulatory event linking the tyrosine kinase activity of EGF receptor to the PIP2 hydrolysis signaling pathway.  相似文献   

3.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

4.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

5.
6.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

7.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

8.
9.
TRANCE, a TNF family member, and its receptor, TRANCE-R, are critical regulators of dendritic cell and osteoclast function. Here, we demonstrate that TRANCE activates the antiapoptotic serine/threonine kinase Akt/PKB through a signaling complex involving c-Src and TRAF6. A deficiency in c-Src or addition of Src family kinase inhibitors blocks TRANCE-mediated PKB activation in osteoclasts. c-Src and TRAF6 interact with each other and with TRANCE-R upon receptor engagement. TRAF6, in turn, enhances the kinase activity of c-Src leading to tyrosine phosphorylation of downstream signaling molecules such as c-Cbl. These results define a mechanism by which TRANCE activates Src family kinases and PKB and provide evidence of cross-talk between TRAF proteins and Src family kinases.  相似文献   

10.
11.
Caveolin-1 is the major coat protein of caveolae and has been reported to interact with various intracellular signaling molecules including the epidermal growth factor (EGF) receptor. To investigate the involvement of caveolin-1 in EGF receptor action, we used mouse B82L fibroblasts transfected with (a) wild type EGF receptor, (b) a C-terminally truncated EGF receptor at residue 1022, (c) a C-terminally truncated EGF receptor at residue 973, or (d) a kinase-inactive EGF receptor (K721M). Following EGF treatment, there was a distinct electrophoretic mobility shift of the caveolin-1 present in cells expressing the truncated forms of the EGF receptor, but this shift was not detectable in cells bearing either normal levels of the wild type EGF receptor or a kinase-inactive receptor. This mobility shift was also not observed following the addition of other cell stimuli, such as platelet-derived growth factor, insulin, basic fibroblast growth factor, or phorbol 12-myristate 13-acetate. Analysis of caveolin-1 immunoprecipitates from EGF-stimulated or nonstimulated cells demonstrated that the EGF-induced mobility shift of caveolin-1 was associated with its tyrosine phosphorylation in cells expressing truncated EGF receptors. Maximal caveolin-1 phosphorylation was achieved within 5 min after exposure to 10 nM EGF and remained elevated for at least 2 h. Additionally, several distinct phosphotyrosine-containing proteins (60, 45, 29, 24, and 20 kDa) were co-immunoprecipitated with caveolin-1 in an EGF-dependent manner. Furthermore, the Src family kinase inhibitor, PP1, does not affect autophosphorylation of the receptor, but it does inhibit the EGF-induced mobility shift and phosphorylation of caveolin-1. Conversely, the MEK inhibitors PD98059 and UO126 could attenuate EGF-induced mitogen-activated protein kinase activation, they do not affect the EGF-induced mobility shift of caveolin-1. Because truncation and overexpression of the EGF receptor have been linked to cell transformation, these results provide the first evidence that the tyrosine phosphorylation of caveolin-1 occurs via an EGF-sensitive signaling pathway that can be potentiated by an aberrant activity or expression of various forms of the EGF receptor.  相似文献   

12.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

13.
Insulin stimulates a rapid phosphorylation and sequestration of the beta(2)-adrenergic receptor. Analysis of the signaling downstream of the insulin receptor with enzyme inhibitors revealed roles for both phosphatidylinositol 3-kinase and pp60Src. Inhibition of Src with PP2, like the inhibition of phosphatidylinositol 3-kinase with LY294002 [2-(4-morpholynyl)-8-phenyl-4H-1-benzopyran-4-one], blocked the activation of Src as well as insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Depletion of Src with antisense morpholinos also suppressed insulin-stimulated receptor sequestration. Src is shown to be phosphorylated/activated in response to insulin in human epidermoid carcinoma A431 cells as well as in mouse 3T3-L1 adipocytes and their derivative 3T3-F422A cells, well-known models of insulin signaling. Inhibition of Src with PP2 blocks the ability of insulin to sequester beta(2)-adrenergic receptors and the translocation of the GLUT4 glucose transporters. Insulin stimulates Src to associate with the beta(2)-adrenergic receptor/AKAP250/protein kinase A/protein kinase C signaling complex. We report a novel positioning of Src, mediating signals from insulin to phosphatidylinositol 3-kinase and to beta(2)-adrenergic receptor trafficking.  相似文献   

14.
Growth hormone (GH) promotes signaling by causing activation of the non-receptor tyrosine kinase, JAK2, which associates with the GH receptor. GH causes phosphorylation of epidermal growth factor receptor (EGFR; ErbB-1) and its family member, ErbB-2. For EGFR, JAK2-mediated GH-induced tyrosine phosphorylation may allow EGFR to serve as a scaffold for GH signaling. For ErbB-2, GH induces serine/threonine phosphorylation that dampens basal and EGF-induced ErbB-2 kinase activation. We now further explore GH-induced EGFR phosphorylation in 3T3-F442A, a preadipocytic fibroblast cell line that expresses endogenous GH receptor, EGFR, and ErbB-2. Using a monoclonal antibody that recognizes ERK consensus site phosphorylation (PTP101), we found that GH caused PTP101-reactive phosphorylation of EGFR. This GH-induced EGFR phosphorylation was prevented by MEK1 inhibitors but not by a protein kinase C inhibitor. Although GH did not discernibly affect EGF-induced EGFR tyrosine phosphorylation, we observed by immunoblotting a substantial decrease of EGF-induced EGFR degradation in the presence of GH. Fluorescence microscopy studies indicated that EGF-induced intracellular redistribution of an EGFR-cyan fluorescent protein chimera was markedly reduced by GH cotreatment, in support of the immunoblotting results. Notably, protection from EGF-induced degradation and inhibition of EGF-induced intracellular redistribution afforded by GH were both prevented by a MEK1 inhibitor, suggesting a role for GH-induced ERK activation in regulating the trafficking itinerary of the EGF-stimulated EGFR. Finally, we observed augmentation of early aspects of EGF signaling (EGF-induced ERK2 activation and EGF-induced Cbl tyrosine phosphorylation) by GH cotreatment; the GH effect on EGF-induced Cbl tyrosine phosphorylation was also prevented by MEK1 inhibition. These data indicate that GH, by activating ERKs, can modulate EGF-induced EGFR trafficking and signaling and expand our understanding of mechanisms of cross-talk between the GH and EGF signaling systems.  相似文献   

15.
Previous studies have shown that EGF can induce the tyrosine phosphorylation of caveolin-1 in murine fibroblasts following ErbB1 (EGF receptor) mutation or overexpression, but the cell signaling events linking EGF action with caveolin phosphorylation are not fully established. In this regard, we examined multiple human carcinoma cell lines that express various ErbB family members, including A431 epidermoid carcinoma cells and several squamous carcinoma cell lines. In all cases, EGF treatment induced the tyrosine phosphorylation of caveolin-1 in a time- and EGF dose-dependent manner, and immunoblotting analysis revealed that this phosphorylation occurred at tyrosine-14. The EGF-dependent phosphorylation of caveolin-1 was observed at low temperatures (4 degrees C) and was enhanced by caveolae-disrupting agents (cyclodextrin), suggesting that this EGF-dependent system is in a low temperature-stable arrangement that allows for their interaction under conditions where mobility in the membrane is altered. To further assess the events linking EGF action with caveolin phosphorylation, we evaluated the ligand specificity of these responses and their dependence on known effectors of EGF receptor function. We observed that EGF and HB-EGF, but not heregulin, promoted caveolin-1 phosphorylation in A431 cells, suggesting that these responses are linked to EGF receptor activation and not solely occurring via the activation of other endogenous ErbB family members. In addition, the EGF-induced phosphorylation of caveolin-1 in A431 cells was blocked by the Src kinase antagonists PP1 and PP2, but not by the MEK inhibitor PD98059, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin, or cytoskeleton-disrupting agents, such as cytochalasin D, colchicine, and nocadazole. Altogether, these data indicate that multiple human carcinoma cells exhibit an EGF receptor-dependent tyrosine phosphorylation of caveolin-1 and that this process is sensitive to Src family kinase inhibitors. These observations support a role for caveolin tyrosine phosphorylation in the profile of cellular responses by which Src potentiates cancer progression following EGF receptor overexpression.  相似文献   

16.
Akt, also called PKB, is a serine/threonine kinase that plays a major role in cell survival. It can be activated by several cellular receptors, including integrins and growth factor receptors, in PI3K-dependent manners. In this study, we analyzed the two current models for Akt activation upon beta1 integrin-mediated adhesion: via focal adhesion kinase and via transactivation of the EGF receptor. Distinct differences in the pathways leading to phosphorylation and activation of Akt from stimulated beta1 integrins and EGF receptor were observed, including opposing sensitivity to the tyrosine kinase inhibitors PP2 and Gefitinib. Using knockout cells and integrin mutant cells, we show that beta1 integrins can induce phosphorylation of Akt at Ser473 and Thr308 and Akt kinase activity independently of the EGF receptor activity, focal adhesion kinase, and the Src family members. In contrast to stimulation with EGF, beta1 integrin-mediated adhesion did not induce Akt tyrosine phosphorylation. Moreover, tyrosine phosphorylation of Akt was found not to be required for its catalytic activity. The results identify a previously unrecognized mechanism by which beta1 integrins activate the PI3K/Akt pathway.  相似文献   

17.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

18.
Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 +/- 0.33 fold (P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 +/- 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, G(i) protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.  相似文献   

19.
20.
We report a mechanism by which the adapter protein Gene 33 (also called RALT and MIG6) regulates epidermal growth factor receptor (EGFR) signaling. We find that Gene 33 inhibits EGFR autophosphorylation and specifically blunts epidermal growth factor (EGF)-induced activation and/or phosphorylation of Ras, ERK, JNK, Akt/PKB, and retinoblastoma protein. The Ack homology domain of Gene 33, which contains the previously identified EGFR binding domain, is both necessary and sufficient for this inhibition of EGFR autophosphorylation. The endogenous Gene 33 polypeptide is induced by EGF, platelet-derived growth factor, serum, and dexamethasone (Dex) in Rat 2 rat fibroblasts. Dex induces Gene 33 expression and inhibits EGFR phosphorylation and EGF signaling. RNA interference-mediated silencing of Gene 33 significantly reverses this effect. Overexpression of Gene 33 completely blocks EGF-induced protein and DNA synthesis in Rat 2 cells, whereas gene 33 RNA interference substantially enhances EGF-induced protein and DNA synthesis in Rat 2 cells. Our results indicate that Gene 33 is a physiological feedback inhibitor of the EGFR, functioning to inhibit EGFR phosphorylation and all events induced by EGFR activation. Our results also indicate a role for Gene 33 in the suppression, by Dex, of EGF signaling pathways. We propose that Gene 33 may function in the cross-talk between EGF signaling and other mitogenic and/or stress signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号