首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Genomics》2020,112(5):3729-3738
Cucumber mosaic virus infection leads to mosaic symptoms on a broad range of crop plants. Mutation at positions 129 in the coat protein of virus causes alterations in the severity of symptoms caused by the viral infection. In our investigation, we performed long term molecular dynamics simulations to elucidate the effect of different amino acid substitutes (infectious and non-infectious) at position 129 in the coat protein of Cucumber mosaic virus using various structural parameters. We found that the contagious mutants displayed more flexibility at loops βE-αEF (129–136) and βF-βG loop (155–163) as compared to the non-infectious and native structures. This specific study at the atomic level yields innovative ideas for designing new therapeutic agents against the pathogen, which would further pave the path for researchers to control this devastating plant virus.  相似文献   

3.
4.
5.
6.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

7.
Using reversed-phase high-performance liquid chromatography, two components of the coat protein of isolate No. 3 of the cucumber green mottle mosaic virus (CGMMV, cucumber strain), Cp1 (minor) and Cp2 (major), were isolated and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In the Cp2 mass spectrum, two polypeptides with Mr of 16,727.0 and 16,813.5 were detected. By Edman degradation in combination with mass spectrometry, the primary structure of the tryptic peptides of Cp2 comprising in total 150 amino acid residues was determined. Two amino acid substitutions, Val-56-->Ala-56 and Asp-64-->Ser-64, were revealed in Cp2, as compared to the watermelon strain of the virus. Cp1 was shown to consist of three polypeptides with Mr of 10,014.2, 10,224.9, and 10,355.9 corresponding to the N-terminal regions of Cp2 (positions 1-92, 1-94, and 1-95). The observed heterogeneity of the coat protein of CGMMV, cucumber strain, may be due to proteolysis during protein isolation.  相似文献   

8.
We have investigated the specificity of replication origin recognition by the initiator proteins of a set of six closely related Staphylococcus aureus plasmids, the pT181 family. These plasmids replicate by an asymmetric rolling-circle mechanism using plasmid-coded initiators that nick the replication origins and form a phosphotyrosine bond at the 5' nick terminus. Five of the plasmids are in different incompatibility groups and their initiator proteins do not cross-complement the cloned origins of any but their own plasmid. One pair is weakly incompatible and their initiator proteins and origins do cross-complement for replication in vivo. This pattern of cross-reactivity led to the prediction that the determinant of specificity would correspond to a homologously positioned set of six residues in the C-terminal domain of the protein, some 80 residues away from the active site tyrosine, that are divergent for all of the compatible plasmids and identical for the incompatible pair. Site-directed mutagenesis was used to exchange these six residues among three pairs of plasmids and these exchanges brought about the predicted switching of origin recognition specificity. Single substitution within this six residue set reduced or eliminated the activity of the protein but did not alter the origin recognition specificity. These six and flanking residues cannot form an amphipathic alpha-helix nor do they conform to the classical helix-turn-helix or other known DNA binding motifs. A novel type of interaction is suggested in which the protein binds to its recognition site, bends and melts the DNA, and causes or enhances the extrusion of an adjacent cruciform containing the nick site. This configuration would juxtapose the nicking target and the active site tyrosine residue and would unwind the highly G + C-rich replication origin.  相似文献   

9.
Type I and type II phosphatidylinositol phosphate (PIP) kinases generate the lipid second messenger phosphatidylinositol (PtdIns) 4,5-bisphosphate and thus play fundamental roles in the regulation of many cellular processes. Although the two kinase families are highly homologous, they phosphorylate distinct substrates and are functionally non-redundant. Type I PIP kinases phosphorylate PtdIns 4-phosphate at the D-5 hydroxyl group and are consequently PtdIns 4-phosphate 5-kinases. By contrast, type II PIP kinases are PtdIns 5-phosphate 4-kinases that phosphorylate PtdIns 5-phosphate at the D-4 position. Type I PIP kinases, in addition, also phosphorylate other phosphoinositides in vitro and in vivo and thus have the potential to generate multiple lipid second messengers. To understand how these enzymes differentiate between stereoisomeric substrates, we used a site-directed mutagenesis approach. We show that a single amino acid substitution in the activation loop, A381E in IIbeta and the corresponding mutation E362A in Ibeta, is sufficient to swap substrate specificity between these PIP kinases. In addition to its role in substrate specificity, the type I activation loop is also key in subcellular targeting. The Ibeta(E362A) mutant and other mutants with reduced PtdIns 4-phosphate binding affinity were largely cytosolic when expressed in mammalian cells in contrast to wild-type Ibeta which targets to the plasma membrane. These results clearly establish the role of the activation loop in determining both signaling specificity and plasma membrane targeting of type I PIP kinases.  相似文献   

10.
Cucumber mosaic virus (CMV) is known to systemically infect Arabidopsis thaliana ecotype Columbia plants. In order to identify the host factors involved in the multiplication of CMV, we isolated an A. thaliana mutant in which the accumulation of the coat protein (CP) of CMV in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in the mutant plants was caused by a single, nuclear and recessive mutation designated cum1-1, which was located on chromosome IV. The cum1-1 mutation did not affect the multiplication of tobacco mosaic virus, turnip crinkle virus or turnip yellow mosaic virus, which belong to different taxonomic groups from CMV. Accumulation of CMV CP in the inoculated leaves of cum1-1 plants was also delayed either when CMV virion or CMV virion RNA was inoculated. On the other hand, when cum1-1 and the wild-type Col-0 protoplasts were inoculated with CMV virion RNA by electroporation, the accumulations of CMV-related RNAs and the coat protein were similar. These results suggest that the cum1-1 mutation did not affect the uncoating of CMV virion and subsequent replication in an initially infected cell but affected the spreading of CMV within an infected leaf, possibly the cell-to-cell movement of CMV in a virus-specific manner.  相似文献   

11.
Papaya mosaic virus (PapMV) coat protein (CP) in Escherichia coli was previously showed to self-assemble in nucleocapsid-like particles (NLPs) that were similar in shape and appearance to the native virus. We have also shown that a truncated CP missing the N-terminal 26 amino acids is monomeric and loses its ability to bind RNA. It is likely that the N-terminus of the CP is important for the interaction between the subunits in self-assembly into NLPs. In this work, through deletion and mutation analysis, we have shown that the deletion of 13 amino acids is sufficient to generate the monomeric form of the CP. Furthermore, we have shown that residue F13 is critical for self-assembly of the CP subunits into NLPs. The replacement of F13 with hydrophobic residues (L or Y) generated mutated forms of the CP that were able to self-assemble into NLPs. However, the replacement of F13 by A, G, R, E or S was detrimental to the self-assembly of the protein into NLPs. We concluded that a hydrophobic interaction at the N-terminus is important to ensure self-assembly of the protein into NLPs. We also discuss the importance of F13 for assembly of other members of the potexvirus family.  相似文献   

12.
The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.  相似文献   

13.
The adiabatic compressibility (beta s) was determined, by means of the precise sound velocity and density measurements, for a series of single amino acid substituted mutant enzymes of Escherichia coli dihydrofolate reductase (DHFR) and aspartate aminotransferase (AspAT). Interestingly, the beta s values of both DHFR and AspAT were influenced markedly by the mutations at glycine-121 and valine-39, respectively, in which the magnitude of the change was proportional to the enzyme activity. This result demonstrates that the local change of the primary structure plays an important role in atomic packing and protein dynamics, which leads to the modified stability and enzymatic function. This is the first report on the compressibility of mutant proteins.  相似文献   

14.
Priola SA  Chabry J  Chan K 《Journal of virology》2001,75(10):4673-4680
In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.  相似文献   

15.

Background  

The rapid accumulation of data on non-synonymous single nucleotide polymorphisms (nsSNPs, also called SAPs) should allow us to further our understanding of the underlying disease-associated mechanisms. Here, we use complex networks to study the role of an amino acid in both local and global structures and determine the extent to which disease-associated and polymorphic SAPs differ in terms of their interactions to other residues.  相似文献   

16.
Lim SH  Ko MK  Lee SJ  La YJ  Kim BD 《Molecules and cells》1999,9(6):603-608
The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.  相似文献   

17.
WILKINSON  JOHN 《Annals of botany》1953,17(2):219-224
Inoculation of Nicotiana glutinosa with the virus causing ‘aspermy’disease in tomato causes malformation of all parts, increaseddevelopment of lateral branches, foliar and floral distortion,and reduced production of seed. Some anthers and ovaries becomenecrotic, but many undergo sporogenesis. At the first meioticdivision the pachytene threads of some spore mother-cells exhibitcollapse, accompanied by abnormal multiplication of nucleolarbodies; whilst pairing fails in one and sometimes two or threebivalents, resulting in a proportion of chromosome-deficientgemetes, with consequent production of miashapen pollen-grains,together with microcytes.  相似文献   

18.
The sequence of the 5'-terminal 106 nucleotides of cucumber mosaic virus (strain Y) RNA 4, the mRNA coding for viral coat protein, has been determined. The first AUG was located at 77 nucleotides from the 5'-terminus and was confirmed to be an initiation codon by analysis of the N-terminal amino acid sequence of the protein. The nucleotide sequence (positions 77-106) beyond the AUG codon predicted the sequence of ten amino acids corresponding to the N-terminal region of the protein, which exactly matched the determined amino acid sequence containing an acetyl methionine as the N-terminal amino acid. The distance of the initiation codon AUG from the cap structure was 76 nucleotides and the longest among the mRNAs for coat protein of plant viruses so far reported (9-36 nucleotides). This noncoding region is rich in U residues (40%) and the number of G residues (21 nucleotides) is the largest among these mRNAs (usually 1 or 2 residues). A possible secondary structure is postulated for the region, which might be implicated in efficient translation of the RNA 4 in vivo.  相似文献   

19.
Espinha LM  Gaspar JO 《Cytobios》1999,100(394):119-126
Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.  相似文献   

20.
The primary structure of the coat protein (CP) gene was examined for pathogenic strain MS-1 and vaccine strain VIROG-43M of the cucumber green mottle mosaic virus (CGMMV). In CP amino acid composition, strains MS-1 and VIROG-43M are typical representatives of CGMMV: their CPs have 98-100% homology to CPs of other tobamoviruses of the group. The CP gene has the same nucleotide composition in pathogenic MS-1 and vaccine VIROG-43M, indicating that strain attenuation is not determined by this gene. The CP amino acid sequences of the two Russian strains are fully identical to the CP sequences of two Greek strains, GR-3 and GR-5. However, the nucleotide sequences of their genes differ in 13 bp, testifying to the difference between the Russian and Greek strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号