首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the effects of insulin, insulin-like growth factor 1 (IGF1), and epidermal growth factor (EGF) on the aromatase activity of granulosa cells isolated from immature rat ovaries. None of the growth factors alone influenced the basal level of aromatase activity, but did modulate follicle-stimulating hormone (FSH)-induced aromatase activity. Insulin and IGF1 augmented the action of a sub-optimal concentration of FSH (5 ng/mL) on aromatase activity in a dose-dependent manner. In contrast, EGF (1–10 ng/mL) was effective in inhibiting aromatase activity maximally stimulated by FSH. Since insulin and IGF1 had opposing actions to those of EGF on FSH-induced aromatase activity, we examined the interactions between the growth factors. EGF inhibited the actions of both FSH and insulin on aromatase activity. Both IGF1 and EGF increased the [3H]thymidine incorporation into the DNA of bovine granulosa cells , IGF1 being a more potent mitogen. Whereas EGF inhibited the actions of IGF1 on aromatase activity, it did not inhibit the effects of IGF1 on the growth of granulosa cells. In summary, growth factors influence both the differentiation and growth of granulosa cells, and may be important regulators of follicular development.  相似文献   

2.
Little is known regarding the hormonal regulation of granulosa cell steroidogenesis and the ovarian insulin-like growth factor (IGF) system in the mare. The objectives of this study were to determine, first, if estradiol, insulin, and/or FSH affect steroid production by equine granulosa cells (experiment 1) and, second, if the components of the IGF system are produced by equine granulosa cells in culture as well as whether estradiol, insulin, and/or FSH affects IGF and/or IGF-binding protein (IGFBP) production by equine granulosa cells (experiment 2). Granulosa cells from small (6-15 mm), medium (16-25 mm), and large (25-48 mm) follicles were collected from cyclic mares (n = 14), cultured for 2 days in medium containing 10% fetal calf serum, washed, and then treated for an additional 2 days in serum-free medium with or without added hormones. In experiment 1, large-follicle granulosa cells produced less progesterone and more estradiol than did medium- and/or small-follicle granulosa cells (P < 0.05). Progesterone production was inhibited (P < 0.05) by FSH and insulin in small- and medium- but not in large-follicle granulosa cells; estradiol was without effect. Insulin increased (P < 0.05) estradiol production in small- and medium-follicle granulosa cells but had no effect in large-follicle granulosa cells. In experiment 2, IGF-I production was inhibited (P < 0.05) by insulin across all follicle sizes but was not affected by estradiol or FSH. Granulosa cells of medium and large follicles produced more IGF-II than did granulosa cells of small follicles (P < 0.05). Insulin and FSH inhibited (P < 0.05) IGF-II production by granulosa cells of large and medium but not of small follicles; estradiol was without effect. Only IGFBP-2 and -5 were produced by equine granulosa cells. Production of IGFBP-2 was less (P < 0.10) in granulosa cells of large versus those of small and medium follicles, whereas medium-follicle granulosa cells produced more (P < 0.05) IGFBP-5 than did small- or large-follicle granulosa cells. Averaged across follicle sizes, estradiol increased (P < 0.05) IGFBP-2 production, FSH increased (P < 0.10) IGFBP-2 and -5 production, and insulin was without effect. These results indicate that IGF-I, IGF-II, IGFBP-2, and IGFBP-5 are produced by equine granulosa cells and that insulin, FSH, and estradiol play a role in the regulation of steroidogenesis and the IGF system of equine granulosa cells.  相似文献   

3.
The objective of this study was to identify factors that would allow the establishment of a serum-free culture system that could support follicular and oocyte growth, antrum formation, and estradiol-17beta (E(2)) production in preantral follicles of bovine ovaries. Large preantral follicles (145-170 micro m in diameter) were microsurgically dissected from ovaries, embedded in 0.15% type I collagen gels, and maintained in a serum-free medium for up to 13 days at 38.5 degrees C in 5% CO(2) in air. This culture environment allowed most preantral follicles to maintain a three-dimensional structure with the presence of a thecal layer and basement membrane surrounding the granulosa cells throughout the entire culture period. The effects of insulin, insulin-like growth factor (IGF)-I, IGF-II, FSH, and LH on preantral follicle growth were investigated in serum-free medium. Follicular diameters were significantly larger in the presence of insulin, IGF-I, IGF-II, or FSH after 13 days in culture. Oocyte diameters were also significantly larger in the presence of all hormones tested. The single addition of insulin, IGF-I, or FSH induced antrum formation between Days 7 and 13 of culture. Insulin progressively induced E(2) secretion by follicles after antrum formation, but IGF-I and FSH had no apparent effect. FSH and LH caused an increase in oocyte diameter in the presence of insulin. The addition of three hormones (insulin, FSH, and LH) initiated antrum formation and E(2) production earlier than insulin-containing medium alone. Furthermore, maximal E(2) secretion was maintained steadily between 7 and 13 days in this culture condition. From these results, we have demonstrated that insulin, FSH, and LH play substantial roles in the growth and development of bovine large preantral follicles in a serum-free medium.  相似文献   

4.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

5.
To evaluate the mechanisms involved in the reduction of estrogen concentrations in porcine follicular fluid during atresia, nonatretic and atretic follicles ranging from 4 to 7 mm in diameter were selected. Follicular fluid estrogen concentrations were 7-16-fold less in the atretic follicles. Isolated granulosa cells from atretic follicles demonstrated a significant reduction in aromatase activity and in follicle-stimulating hormone (FSH)-induced progesterone production in vitro compared to granulosa cells from nonatretic follicles. Isolated theca from atretic follicles also demonstrated a reduction in estrogen production. However, androgen concentrations were equivalent in the follicular fluid of atretic and nonatretic follicles, and theca from atretic follicles maintained testosterone and androstenedione production in vitro. The loss of thecal aromatase activity with atresia is not secondary to a reduction in FSH responsiveness, since FSH did not increase thecal progesterone production in vitro. Cell degeneration also does not account for the reduction in thecal estrogen production, since both androgen output in vitro and follicular fluid androgen concentrations were maintained. These data thus demonstrate that a mechanism other than reduced FSH responsiveness must account for the selective loss of thecal aromatase activity in this stage of atresia.  相似文献   

6.
Hypo- and hyper-corticosteronisms have adverse effects on ovarian endocrine and exocrine functions. In the present study, the mechanism by which corticosterone in excess or insufficiency impairs steroidogenesis in granulosa and thecal cells was investigated in adult albino Wistar rats. In this regard, rats were administered with corticosterone-21-acetate (2 mg/100 g b.wt., s.c., twice daily) or metyrapone (11beta-hydroxylase blocker) (10 mg/100 g b.wt., s.c., twice daily) for 15 days and a group of corticosterone/metyrapone treated rats was withdrawn of treatment and maintained for another 15 days and killed during their diestrus phase. Administration of corticosterone-21-acetate while elevated the serum corticosterone levels, metyrapone diminished the same. Administration of metyrapone reduced the serum levels of LH and estradiol; corticosterone reduced the levels of FSH in addition to LH and estradiol. In vitro production of progesterone and estradiol by the granulosa and thecal cells was decreased due to altered corticosterone status. Whereas administration of corticosterone significantly reduced the activity of 3beta-hydroxysteroid dehydrogenases (3beta-HSD) in granulosa and thecal cells, it reduced the activity of 17beta-HSD only in granulosa cells. While metyrapone treatment reduced the activity of 17beta-HSD in granulosa as well as thecal cells, it reduced the activity of 3beta-HSD only in thecal cells. The findings of the present investigation clearly demonstrate that excess or insufficiency in corticosterone affects steroidogenic process in the ovary. This is achieved by decreasing the levels of gonadotropins probably by their diminished synthesis and secretion and by interfering at the signal transduction process of these gonadotropins.  相似文献   

7.
Bhatia B  Price CA 《Steroids》2001,66(6):511-519
It is known that follicle-stimulating hormone (FSH) and insulin stimulate estradiol secretion from cultured non-luteinizing granulosa cells. The interaction between these hormones is less well understood. Granulosa cells from small (2-4 mm) bovine follicles were cultured in serum-free medium to determine if cytochrome P450 aromatase activity is regulated by FSH in the presence of different concentrations of insulin. Insulin significantly stimulated aromatase activity in the absence of FSH. There was a significant interaction between insulin and FSH on aromatase activity, such that FSH stimulated activity at low (0.5, 1 and 10 ng/ml) doses of insulin, whereas at higher (100 ng/ml) doses of insulin FSH failed to stimulate aromatase activity. To determine if the lack of a response to FSH with higher doses of insulin is related to gene expression, the effect of FSH on P450 aromatase mRNA levels was measured. An 'uncoupling' of mRNA and enzyme activity was observed for cells cultured with 100 ng/ml insulin, as FSH significantly increased P450 aromatase mRNA abundance without affecting estradiol secretion or aromatase activity. We conclude that in the presence of high doses of insulin, FSH decreases aromatase activity, and an uncoupling of P450 aromatase mRNA and aromatase activity occurs. This may have implications for infertility treatments when there is a risk of hyperinsulinemia.  相似文献   

8.
Akira A  Ohmura H  Uzumcu M  Araki T  Lin YC 《Theriogenology》1994,41(7):1489-1497
The present study investigated whether gossypol inhibited aromatase activity in cultured porcine granulosa cells. Aromatase activity was assayed by measuring (3)H-H(2)O released from [1beta-(3)H]-androstenedione. First, immature porcine granulosa cells were cultured with various doses of follicle stimulating hormone (FSH, 1 to 1000 ng/ml) for 1 to 5 d to determine optimal culture conditions for aromatase activity assay. Second, porcine granulosa cells were cultured with or without FSH in the presence or absence of gossypol. Gossypol, at 4 muM, significantly inhibited FSH-induced aromatase activity while showing no effect on basal aromatase activity. Gossypol did not inhibit cell proliferation during cell culture. These results suggest that gossypol inhibits aromatase activity by interfering with FSH induction of aromatase in cultured porcine granulosa cells.  相似文献   

9.
The studies reviewed here indicate that follicle regulatory protein (FRP) alters aromatase and 3B-hydroxysteroid dehydrogenase activity in porcine, human, and rat granulosa cells. The inhibitory effect of FRP on granulosal aromatase activity depend upon the response of the cell to FSH: large amounts of FSH can partially overcome FRP inhibition while relatively small amounts of FSH sensitize the granulosal aromatase system to FRP. Although androgens potentiate FSH-mediated granulosal functions, they also sensitize granulosa cell steroidogenic enzymes to inhibition by FRP. The demonstration that FRP acts primarily on granulosa cells of less mature antral follicles to inhibit aromatase supports the hypothesis that FRP may facilitate follicle selection and suggests a role for FRP in atresia. Most of the effects of FRP on granulosal activities reflect an interplay between the systemic endocrine and local paracrine systems. That FRP functions, at least in part, by modulating follicular response to FSH is consistent with the hypothesis that paracrine effectors are important mediators of folliculogenesis in the presence of gonadotropins.  相似文献   

10.
Although it is widely accepted that estrogens exert a major trophic effect on follicular growth, their mechanism of action has not been established. We examined the effect of estrogen treatment in vivo or in vitro on DNA synthesis in rat granulosa cells cultured under defined conditions (DMEM:F12, collagen-coated plastic wells). Treatment with diethylstilbestrol (DES) in vivo (silastic implants containing 5 mg DES) for at least 2 days was required to observe a significant stimulation of 3H-thymidine incorporation by insulin (1 microgram/ml) in culture. Rat thecal/interstitial cells (TI) were isolated from DES-treated rats and cultured under the same conditions as granulosa cells. Conditioned media from TI cells stimulated DNA synthesis in granulosa cell cultures (as much as twofold). This effect was markedly amplified by estradiol treatment (1 microgram/ml) of the TI cell cultures. Addition of estradiol to granulosa cell cultures enhanced the effect of conditioned medium from nontreated TI cells. Conditioned medium from estradiol-treated TI cells stimulated DNA synthesis in granulosa cells from both DES-treated and nontreated rats. Estradiol had no effect when added directly to purified granulosa cell cultures but stimulated 3H-thymidine incorporation in crude preparations of ovarian cells. The stimulatory effects of TI cell-conditioned medium and insulin were reflected in the final cell densities achieved after 9 days in culture. We conclude that the mitogenic actions of estrogens in the ovary involve sensitization of granulosa cells to locally present mitogens like insulin and a TI cell-derived growth factor.  相似文献   

11.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

12.
Differentiation of dominant versus subordinate follicles in cattle   总被引:2,自引:0,他引:2  
Selection of a dominant follicle, capable of ovulating, from among a cohort of similarly sized follicles is a critical transition in follicular development. The mechanisms that regulate the selection of a species-specific number of dominant follicles for ovulation are not well understood. Cattle provide a very useful animal model for studies on follicular selection and dominance. During the bovine estrous cycle, two or three sequential waves of follicular development occur, each producing a dominant follicle capable of ovulating if luteal regression occurs. Follicles are large enough to allow analysis of multiple endpoints within a single follicle, and follicular development and regression can be followed via ultrasonographic imaging. Characteristics of recruited and selected follicles, obtained at various times during the first follicular wave, have been determined in some studies, whereas dominant and subordinate follicles have been compared around the time of selection in others. As follicular recruitment proceeds, mRNA for P450 aromatase increases. By the time of morphological selection, the dominant follicle has much higher concentrations of estradiol in follicular fluid, and its granulosa cells produce more estradiol in vitro than cells from subordinate follicles. Shortly after selection, dominant follicles have higher levels of mRNAs for gonadotropin receptors and steroidogenic enzymes. It has been hypothesized that granulosa cells of the selected follicle acquire LH receptors (LHr) to allow them to increase aromatization in response to LH, as well as FSH. However, LH does not appear to stimulate estradiol production by bovine granulosa cells, and the role of LHr acquisition remains to be determined. Recent evidence suggests a key role for changes in the intrafollicular insulin-like growth factor (IGF) system in selection of the dominant follicle. When follicular fluid was sampled in vivo before morphological selection, the lowest concentration of IGF binding protein-4 (IGFBP-4) was more predictive of future dominance than size or estradiol concentration. Consistent with this finding, dominant follicles acquire an FSH-induced IGFBP-4 protease activity. Thus, a decrease in IGFBP-4, which would make more IGF available to interact with its receptors and synergize with FSH to promote follicular growth and aromatization, appears to be a critical determinant of follicular selection for dominance.  相似文献   

13.
Androgens acting via the androgen receptor (AR) have been implicated in regulation of folliculogenesis in many animal species. These effects are possibly mediated via enhancement of FSH and/or insulin-like growth factor (IGF)-I activity in granulosa cells, which contain high levels of AR protein. We examined the in vitro effect of dihydrotestosterone (DHT) on DNA synthesis and progesterone secretion by follicular cells in response to FSH and IGF-I, alone or in combination. Cells from separate pools of 1- to 3-mm and 3- to 5-mm antral follicles were aspirated from gilt ovaries and fractioned into mural granulosa cells (MGCs) and cumulus-oocyte complexes (COCs) for subsequent cell culture. Androgen alone or with any combination of mitogen had minimal effect on proliferative and no effect on steroidogenic responses of MGCs from 3- to 5-mm antral follicles. Conversely, in MGCs from 1- to 3-mm follicles, DHT significantly enhanced IFG-I-stimulated proliferation and had variable influence on progesterone secretion. The effects of DHT on proliferative responses of COCs were also dependent on follicle size: DHT significantly augmented either IGF-I-stimulated proliferation (1- to 3-mm follicles) or FSH-stimulated proliferation (3- to 5-mm follicles). However, the steroidogenic responses of all COCs were identical, whereby DHT significantly suppressed progesterone secretion, predominantly in the presence of FSH. Addition of an AR antagonist, hydroxyflutamide, generally reversed the proliferative responses invoked by DHT but not the steroidogenic responses. We conclude that androgen-receptor-mediated activity in granulosa cells of antral follicles is dependent on follicle size, is influenced by proximity of cells to the oocyte, and possibly involves both classic and nonclassic steroid mechanisms.  相似文献   

14.
The objective of this study was to assess the effect of ovine follicular fluid (FF) treatment (with or without FSH replacement) during the late follicular phase on plasma concentrations of gonadotrophins and the development of the ovulatory follicle. Ovarian steroid secretion and expression of mRNA encoding inhibin alpha and beta A, beta B subunits, P450 aromatase and P450 17 alpha-hydroxylase were used as endpoints. After induction of luteolysis by injection of 100 micrograms cloprostenol on days 10-12, Scottish Blackface ewes were allocated to one of three groups: (1) control (n = 7): no further treatment; (2) FF (n = 9): subcutaneous injections of 3 ml steroid-free ovine follicular fluid at 9 h intervals, 18 and 27 h after cloprostenol injection; (3) FF + FSH (n = 8): injections of follicular fluid as above plus subcutaneous injections of 0.36 iu ovine FSH at 6 h intervals, 18, 24, and 30 h after cloprostenol injection. Jugular venous blood samples were obtained via indwelling cannulae at 6 h intervals from 0 to 36 h after cloprostenol injection, and at 10 min intervals from 12 to 18 h (control phase) and from 30 to 36 h after cloprostenol injection (treatment phase). At laparotomy, 36 h after cloprostenol injection, ovarian venous blood was collected and ovaries were removed and processed for in situ hybridization. Plasma concentrations of FSH, luteinizing hormone (LH) and oestradiol were determined by radioimmunoassay. Follicular fluid treatment resulted in a decrease (P < 0.001) in FSH concentrations associated with an acute decrease in ovarian steroid secretion (P < 0.01) and a specific depression in P450 aromatase, (P < 0.001), inhibin-activin beta B subunit (P < 0.05) and thecal LH receptor (P < 0.001) expression. Follicular fluid treatment had no effect on inhibin-activin alpha and beta A, subunit or P450 17 alpha-hydroxylase expression. FSH co-treatment with follicular fluid restored circulating FSH concentrations to normal values and reversed some of the effects of follicular fluid (androstenedione, testosterone and progesterone secretion, and inhibin beta B and thecal LH receptor expression) but not oestradiol secretion or P450 aromatase expression. It was concluded that the actions of follicular fluid are mediated via both central effects on pituitary FSH secretion and by direct ovarian effects on granulosa cell aromatase activity. The results indicate that follicular fluid contains a factor that inhibits aromatase activity of granulosa cells directly and may play a role in the selection of the dominant follicle.  相似文献   

15.
The mechanism by which estrogens enhance gonadotropin-stimulated ovarian progestin production was investigated by studying the modulation of pregnenolone biosynthesis as well as the activities of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) in cultured rat granulosa cells. Cells from immature hypophysectomized, estrogen-treated rats were cultured for 3 days with follicle-stimulating hormone (FSH) and/or estrogens. Pregnenolone production was measured in the presence of cyanoketone which inhibits 3 beta-HSD activity. Activities of 3 beta-HSD and 20 alpha-HSD were determined in cell homogenates by direct enzyme assays. Some cells were also primed with FSH to induce luteinizing hormone (LH) receptors for studies on the effects of estrogens on LH-modulated parameters. Pregnenolone production by cultured granulosa cells was stimulated by FSH, while treatment with diethylstilbestrol (DES) or estradiol further enhanced the gonadotropin action. Treatment with FSH increased 3 beta-HSD activity. Similarly, concomitant treatment with DES further enhanced 3 beta-HSD activity in a dose-dependent manner with an apparent ED50 of 10(-8) M. Also, treatment with estrogens alone increased 3 beta-HSD activity. The increases in enzyme activity induced by estrogen alone or in combination with FSH were not associated with changes in the apparent Km values. FSH also stimulated 20 alpha-HSD activity by 2-fold in these cells, while concomitant treatment with DES did not affect the FSH action. In FSH-primed cells, LH stimulated pregnenolone production while the LH action was enhanced by concomitant treatment with the estrogens. Likewise, LH stimulated the activity of 3 beta-HSD, while concomitant DES treatment further augmented LH action. LH did not stimulate 20 alpha-HSD activity when added alone or in combination with DES. Thus, the estrogen enhancement of the gonadotropin-stimulated progesterone production in cultured rat granulosa cells is associated with increases in pregnenolone biosynthesis and the activity of the 3 beta-HSD enzyme, without affecting the 20 alpha-HSD activity.  相似文献   

16.
The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E(2)), and progesterone (P(4)) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E(2), and P(4) and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E(2) (4.6-fold), and P(4) (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E(2) (P < 0.05) but enhanced IGF-induced P(4) secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.  相似文献   

17.
Estradiol-17β (E2) is a mitogen in vivo for the proliferation of granulosa cells in the rat ovary. E2 is synthesized by the preovulatory follicle through a series of gonadotrophin-dependent events: LH stimulates thecal cells to synthesize androgens (androstenedione and testosterone) which are substrates for FSH-induced aromatization to estrogens in granulosa cells. More recently, we have found that transforming growth factor-β (TGF-β) stimulates DNA synthesis in rat granulosa cells in vitro and this effect is augmented by FSH. Since E2 is a mitogen in vivo and TGF-β is the only known growth factor to stimulate proliferation in vitro, the possible link between the actions of E2 and TGF-β were examined. E2 stimulated the secretion of a TGF-β-like factor by rat granulosa cells in culture, and with time DNA synthesis was stimulated. The mitogenic action of E2 was enhanced in the presence of FSH, and attenuated by a neutralizing antibody to TGF-β. The latter observations have identified TGF-β as the “missing-link” in the mitogenic actions of E2 on rat granulosa cells. In addition to the growth-promoting actions of TGF-β plus FSH, TGF-β enhanced FSH-induced aromatase activity. Consequently, FSH plus TGF-β stimulates both the proliferation and aromatization capacity of rat granulosa cells. We propose that interactions between FSH, E2 and TGF-β lead to the exponential increase in serum E2 levels that occurs during the follicular phase of the cycle. Similarly, FSH stimulates the aromatization of exogenous androgens to estrogen by Sertoli cells isolated from immature rat testes, and there is a correlation between FSH-induced aromatization and mitotic activity. We have shown that FSH plus TGF-β stimulates DNA synthesis in Sertoli cells. Since E2 increases the secretion of TGF-β by Sertoli cells, interactions between FSH, E2 and TGF-β may provide the mitogenic stimulus for Sertoli cells during the prepubertal period. In summary, our findings suggest that the estrogen-induced growth of rat granulosa cells is mediated through the production of TGF-β, which acts as an autocrine regulator of proliferation. We also propose that the growth-promoting actions of FSH on Sertoli cells may depend upon a cascade series of events involving estrogens and TGF-β.  相似文献   

18.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

19.
Little is known regarding the role of insulin-like growth factor 2 (IGF2) and the regulation of the IGF2 receptor (IGF2R) during follicular development. Granulosa cells were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and were treated with IGF2 for 1-2 days in serum-free medium, and steroid production, cell proliferation, specific (125)I-IGF2 binding, and gene expression were quantified. IGF2 increased both estradiol and progesterone production by granulosa cells, and cells from large follicles were more responsive to the effects of IGF2 than those from small follicles. Abundance of aromatase (CYP19A1) mRNA was stimulated by IGF2 and IGF1. The effective dose (ED(50)) of IGF2 stimulating 50% of the maximal estradiol production was 63 ng/ml for small follicles and 12 ng/ml for large follicles, and these values were not affected by FSH. The ED(50) of IGF2 for progesterone production was 20 ng/ml for both small and large follicles. IGF2 also increased proliferation of granulosa cells by 2- to 3-fold, as determined by increased cell numbers and (3)H-thymidine incorporation into DNA. Treatment with IGF1R antibodies reduced the stimulatory effect of IGF2 and IGF1 on estradiol production and cell proliferation. Specific receptors for (125)I-IGF2 existed in granulosa cells, and 2-day treatment with estradiol, FSH, or cortisol had no significant effect on specific (125)I-IGF2 binding. Also, FSH treatment of small- and large-follicle granulosa cells had no effect on IGF2R mRNA levels, whereas IGF1 decreased IGF2R mRNA and specific (125)I-IGF2 binding. Granulosa cell IGF2R mRNA abundance was 3-fold greater in small than in large follicles. These findings support the hypothesis that both IGF2 and its receptor may play a role in granulosa cell function during follicular development. In particular, increased free IGF1 in developing follicles may decrease synthesis of IGF2R, thereby allowing for more IGF2 to be bioavailable (free) for induction of steroidogenesis and mitogenesis via the IGF1R.  相似文献   

20.
Oocytes can regulate their own development, hence studies identifying and characterising oocyte-secreted factors are crucial to resolving the mechanisms by which oocytes can orchestrate follicular development. The insulin-like growth factor (IGF) system plays an important role during the development of a follicle; however, the regulation of IGF bioavailability is crucial throughout follicular growth. Proteolytic cleavage of the IGF/IGF binding protein (IGFBP) complex increases IGF bioavailability, hence, the production of IGFBP proteases by the oocyte and/or granulosa cells would provide a regulatory mechanism whereby they could regulate their own exposure to IGFs. The present study revealed mural granulosa cells (MGC), and not the oocyte, are the major source of proteases capable of cleaving IGFBP-2 in the developing bovine antral follicle. The addition of recombinant IGF-I or FSH had no effect in terms of modulating IGFBP-2 degradation. This work further supports the existence of a local regulatory mechanism modulating IGF bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号