首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to corroborate the regulatory role of Ca++-calmodulin system in the steroidogenic response to adrenocorticotropic hormone (ACTH), the effects of calmodulin inhibitors (chlorpromazine, trifluoperazine, and W-7) on cortisol production and cellular cholesterol ester hydrolysis induced by ACTH in bovine adrenocortical cells were examined. Three calmodulin inhibitors diminished not only the cholesterol ester hydrolysis and cortisol production induced by ACTH in the presence of Ca++, but also inhibited the Ca++-induced hydrolysis and cortisol production in the absence of ACTH. Neither cortisol production in crude mitochondrial fraction nor the ACTH-induced Ca++-influx was affected by chlorpromazine. These results indicate that Ca++f-calmodulin system plays a significant regulatory role in the supply of free cholesterol to the adrenal mitochondria in the steroidogenic response to ACTH.  相似文献   

2.
A role for calmodulin in the regulation of steroidogenesis   总被引:2,自引:1,他引:1       下载免费PDF全文
Two approaches were used to study the possible role of calmodulin in the regulation of steroid synthesis by mouse adrenal tumor cells: trifluoperazine was used as an inhibitor of calmodulin and liposomes were used to deliver calmodulin into the cells. Trifluoperazine inhibits three steroidogenic responses to both ACTH and dibutyryl cyclic AMP: (a) increase in steroid production, (b) increased transport of cholesterol to mitochondria, and (c) increased side-chain cleavage by mitochondria isolated from cells incubated with ACTH or dibutyryl cyclic AMP. When calmodulin is introduced into the cells via liposomes, steroid synthesis is slightly stimulated. When calmodulin extensively dialyzed against EGTA, this stimulation is abolished. Ca(2+) introduced via liposomes was also without effect. However, when both calmodulin and Ca(2+) are introduced via liposomes (either in separate liposomes or in the same liposomes), steroid synthesis is stimulated. This stimulation does not occur when either anticalmodulin antibodies or EGTA is also present in the liposomes or when trifluoperazine is present in the incubation medium. Calmodulin and Ca(2+) presented together in liposomes to the cells stimulate transport of cholesterol to mitochondria, and side-chain cleavage activity is greater in mitochondria isolated from cells previously fused with liposomes containing calmodulin and Ca(2+) than in mitochondria from cells fused with liposomes containing buffer only. These observations suggest that calmodulin may be involved in regulating the transport of cholesterol to mitochondria, a process which is stimulated by ACTH and dibutyryl cyclic AMP and which may account, at least in part, for the increase in steroid synthesis produced by these agents.  相似文献   

3.
A significant proportion of the steroidogenic response of isolated rat adrenocortical cells to dibutyryl cyclic AMP does not require extracellular calcium, and this component is profoundly depressed by low concentrations of the putative calcium antagonist, TMB-8. The inhibition is reversed by either the readdition of calcium or the calcium ionophore A23187. The steroidogenic response to pregnenolone, whose mode of action does not require calcium, was not depressed by TMB-8. Corticotropin (ACTH)-induced steroidogenesis, which requires extracellular calcium, was markedly depressed by TMB-8, although enhanced cyclic AMP formation is only slightly depressed by this drug. Adrenal cortical microsomes possess an ATP-dependent 45calcium (45Ca2+) uptake system which responded to EGTA with a rapid efflux of 45Ca2+; EGTA-induced calcium efflux from this microsomal fraction was markedly reduced by a concentration of TMB-8 that blocked dibutyryl cyclic AMP-evoked steroidogenesis. TMB-8 produced a smaller but significant reduction of EGTA-facilitated 45Ca2+ efflux from a mitochondrial-enriched fraction. We interpret these results to mean that TMB-8 blocks the steroidogenic effect of dibutyryl cyclic AMP by interfering with the mobilization of a cellular pool of calcium that is probably localized to the endoplasmic reticulum. The physiological implications of these findings in relation to the complex interactions between calcium and cyclic AMP in adrenal steroidogenesis are discussed.  相似文献   

4.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

5.
E Davies  C J Kenyon  R Fraser 《Steroids》1985,45(6):551-560
Removal of free calcium ions from the incubation medium of isolated bovine adrenocortical cells with EGTA reduced basal cortisol synthesis and blocked the effects of ACTH; additional calcium restored normal steroid synthesis. Calcium channel blockers, verapamil and nitrendipine and the calmodulin antagonist, trifluoperazine inhibited ACTH-stimulated cortisol synthesis in a dose-dependent manner (IC50s of 6.2, 10 and 5.2 microM, respectively). Steroidogenic effects of dibutyryl cyclic AMP were prevented with 50 microM verapamil or trifluoperazine. Calcium ionophore A23187 at 1 microM increased cortisol synthesis 2-3 fold which was less than the normal response to ACTH. Stimulatory effects of ionophore and cyclic AMP or ACTH were not additive. ACTH-stimulation of cortisol synthesis appears to involve cyclic AMP-dependent uptake of extracellular calcium ions, possibly by a mechanism requiring calmodulin. Increases in intracellular calcium ions cannot wholly mimic ACTH actions.  相似文献   

6.
This study examines the pattern and regulatory properties of cyclic nucleotide phosphodiesterases in a human lymphoblastoid B-cell line (RPMI 8392) established from a patient with acute lymphocytic leukaemia. In this cell line, phosphodiesterase activity measured at 0.25 microM-cyclic AMP is approx. 7-fold greater than that in isolated human peripheral-blood lymphocytes, and 16% of the phosphodiesterase activity in RPMI 8392 cells is associated with particulate fractions. Phosphodiesterase activity in crude fractions of this cell line is reproducibly stimulated by about 60-80% by Ca2+-calmodulin. In the presence of 20 nM-calmodulin, half-maximal stimulation occurs at 0.7 microM-Ca2+. The cytosolic phosphodiesterase activity of RPMI 8392 cells is separated into two forms by DEAE-Sephacel chromatography. The first form is eluted at approx. 0.2 M-sodium acetate, catalyses the hydrolysis of both cyclic AMP and cyclic GMP, and is stimulated 3-fold by Ca2+-calmodulin. This form exhibits non-linear kinetics for cyclic AMP in the absence of calmodulin, with extrapolated Km values of 0.8 and 4 microM, and non-linear kinetics in the presence of calmodulin, with extrapolated Km values of 0.5 and 1 microM. The Vmax. values are increased approx. 3-fold by calmodulin. The second form is eluted at approx. 0.6 M-sodium acetate, is specific for cyclic AMP, and insensitive to stimulation by Ca2+-calmodulin. The Ca2+-calmodulin-sensitive phosphodiesterase from the DEAE-Sephacel column can be adsorbed to a calmodulin-Sepharose affinity column and eluted with EGTA. This enzymic activity can also be immunoprecipitated by a monoclonal antibody directed against a calmodulin-bovine heart phosphodiesterase complex. This study documents the existence of Ca2+-calmodulin-sensitive phosphodiesterase in a cultured lymphoblastoid cell line derived from a leukaemic patient.  相似文献   

7.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

8.
Intracellular recordings from cultured parietal cells of the rat gastric fundus showed that carbachol, pentagastrin, histamine (in the presence of isobutylmethylxanthine; IBMX) and dibutyryl cyclic AMP induced hyperpolarizing responses which were sensitive to a K+ channel blocker, quinine. The Ca2+ ionophore, ionomycin, also induced a quinine-sensitive hyperpolarization. Deprivation of extracellular Ca2+ preferentially inhibited the hyperpolarizing responses to histamine (plus IBMX) and to dibutyryl cyclic AMP. Caffeine, oxalate and dantrolene sodium, which are known to affect Ca2+ transport in the endoplasmic reticulum, selectively inhibited the carbachol response. Mitochondrial inhibitors (KCN and carbonylcyanide p-trifluoromethoxyphenylhydrazone) preferentially suppressed the gastrin response. Cytosolic Ca2+ measurements with fura-2 indicated that significant increases in the intracellular concentration of free Ca2+ were induced not only by Ca2+-mediated acid secretagogues (carbachol and gastrin), but also by a cyclic AMP-mediated secretagogue (histamine plus IBMX). Dibutyryl cyclic AMP also increased cytosolic Ca2+ ions. It is concluded that stimulation of receptors to histamine, carbachol and gastrin gives rise to mobilization of Ca2+ ions into the cytoplasm from the different sources, thereby stimulating Ca2+-activated K+ channels in cultured rat parietal cells.  相似文献   

9.
Much of the cholesterol used in steroid synthesis is stored in lipid droplets in the cytoplasm of steroid-forming cells. The cholesterol ester in these droplets is transported to the inner mitochondrial membrane where it enters the pathway to steroid hormones as free cholesterol—the substrate for the first enzyme, namely P450scc. It has been shown that this transport process governs the rate of steroid synthesis and is specifically stimulated by ACTH and its second messenger. The stimulating influence of ACTH on cholesterol transport is inhibited by cytochalasins, by monospecific anti-actin and by DNase I demonstrating that the steroidogenic cell must possess a pool of monomeric actin available for polymerization to F actin if it is to respond to ACTH and cyclic AMP. It has been shown that the two structures involved in cholesterol transport (droplets and mitochondria) are both bound to vimentin intermediate filaments in adrenal and Leydig cells. In addition these filaments are closely associated with the circumferential actomyosin ring in which they are crosslinked by actin microfilaments. In permeabilized adrenal cells Ca2+/calmodulin phosphorylates vimentin and this change is known to disrupt intermediate filaments and to cause contraction of actomyosin by phosphorylating myosin light chain kinase. Ca2+/calmodulin stimulated cholesterol transport and steroid synthesis and causes rounding of the responding cells by contraction of the actomyosin, if ATP is also added at the same time. Other agents that disrupt intermediate filaments include anti-vimentin plus ATP in permeabilized cells which also results in rounding of the cell. Acrylamide exerts a similar effect in intact adrenal cells and in addition causes rounding of the cells and increase in steroid synthesis without increase in cyclic AMP. It is also known that if adrenal cells are grown on surfaces treated with poly(HEMA), the cells grow in rounded form and steroid synthesis is increased in proportion to the degree of rounding (r = 0.92). This response does not involve increase in cellular levels of cylic AMP. It is proposed that in vivo where the cell is always round and cannot show more than strictly limited change in shape, ACTH activates Ca2+/calmodulin possibly by redistributing cellular Ca2+. Ca2+/calmodulin in turn promotes phosphorylation of vimentin and myosin light chain. The first of these phosphorylations shortens intermediate filaments and the second promotes contraction of the actomoyosin ring with internal shortening and approximation of lipid droplets and mitochondria. Details of the earlier events (activation of Ca2+/calmodulin) and later changes (transfer of cholesterol to the inner membrane) remain to be elucidated. It is clear however that the action of ACTH requires increase in cellular cyclic AMP. These experimental responses bypass this step in the response to ACTH.  相似文献   

10.
V Giguere  G Lefevre  F Labrie 《Life sciences》1982,31(26):3057-3062
Synthetic ovine corticotropin-releasing factor (CRF) causes a 6- to 8-fold stimulation of ACTH release and cAMP accumulation in rat anterior pituitary cells in culture at ED50 values of 1 and 4 nM, respectively. Removal of Ca2+ from the incubation medium reduces CRF-induced ACTH release by 70% but have no effect on cyclic AMP accumulation. ACTH release induced by 8-Br-cAMP is inhibited by 65% in the absence of Ca2+. The Ca2+ ionophore A23187 does not alter spontaneous ACTH release. Verapamil, a pharmacological agent that blocks Ca2+ entry into cells, has no influence on spontaneous or CRF-induced ACTH release. The present data clearly demonstrate a role of Ca2+ in CRF action at a step subsequent to cAMP formation and suggest that Ca2+ is mobilized from intracellular stores during CRF stimulation.  相似文献   

11.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

12.
Divalent metals used to support phosphodiesterase (EC 3.1.4.-) activity have been found to influence the substrate and enzyme specificity of many phosphodiesterase inhibitors in studies of the hydrolysis of cyclic AMP and cyclic GMP by the calmodulin-dependent and cyclic AMP-specific phosphodiesterases from bovine heart. Many compounds displayed marked differences in substrate specificity and inhibitory potency in the presence of Mg2+, as compared with Mn2+, when studied with the unactivated form of calmodulin-dependent phosphodiesterase, while few compounds displayed differences in the presence of calmodulin. With a single divalent metal, marked differences in inhibitory potency and substrate specificity were also observed in the absence or presence of calmodulin suggesting that alterations in calmodulin and/or Ca2+ levels may greatly affect the response to phosphodiesterase inhibitors. Divalent metals did not alter the effects of inhibitors on the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase, however divalent metals would probably indirectly influence the relative cellular level of cyclic AMP hydrolyzed by this enzyme, and therefore the effects of inhibitors, through metal effects on the calmodulin-dependent phosphodiesterase. No correlation was found between the inhibitory activity of the compounds, many of which were cyclic nucleotide analogs, and their ability to activate cyclic AMP-dependent or cyclic GMP-dependent protein kinases or to affect cyclic AMP-dependent protein kinase activity by displacing bound cyclic AMP.  相似文献   

13.
Both angiotensin II and adrenocorticotropic hormone (ACTH) are well known to play a crucial role on the regulation of aldosterone production in adrenal glomerulosa cells. Recent observations suggest that the steroidogenic action of ACTH is mediated via the cAMP messenger system, whereas angiotensin II acts mainly through the phosphoinositide pathway. However, there have been no reports concerning the interaction between the cAMP messenger system activated by ACTH and the Ca2+ messenger system induced by angiotensin II. Both ACTH and angiotensin II simultaneously act on adrenal cells for regulating steroidogenesis under physiological conditions. Thus the present experiments were performed to examine the effect of ACTH on the action of angiotensin II by measuring angiotensin II receptor activity, cytosolic Ca2+ movement, and aldosterone production. The major findings of the present study are that short-term exposure to a high dose of ACTH (10(-7) M) inhibited 125I-angiotensin II binding to bovine adrenal glomerulosa cells, decreased the initial spike phase of [Ca2+]i induced by angiotensin II, and inhibition of angiotensin II-induced aldosterone production. Low dose of ACTH (10(-10) M), which did not increase cAMP formation, did not affect angiotensin II receptor activity. These studies have shown that angiotensin II receptors of bovine adrenal glomerulosa cells can be down-regulated by 1 mM dibutyryl cyclic AMP, as well as by effectors which are able to activate cAMP formation (10(-7) M ACTH and 10(-5) M forskolin). The rapid decrease in angiotensin II receptors induced by 10(-7)M ACTH was associated with a decreased steroidogenic responsiveness and a decreased rise in the [Ca2+]i response induced by angiotensin II. These studies show that the cAMP-dependent processes activated by ACTH have the capacity to interfere with signal transduction mechanisms initiated by receptors for angiotensin II.  相似文献   

14.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

15.
The mechanism of the prolonged stimulatory effect of corticotropin (ACTH) on adrenocortical synthesis of cortisol was studied in guinea-pig adrenocortical cells harvested from control animals and from guinea-pigs submitted 24 h before the sacrifice to a prolonged ether anesthesia in an attempt to induce a release of endogenous ACTH. As a result of this in vivo exposure to endogenous ACTH, the maximal capacity to produce glucocorticoids (by 1 X 10(5) cells incubated during 2 h) in response to ACTH increased from 579 +/- 111 ng (control group) to 915 +/- 143 ng for cells from treated animals, whereas the apparent affinity of the steroidogenic response to ACTH remained unchanged. This hyper-reactivity of cells from anesthetized animals was also evident in the presence of dibutyryl cyclic AMP. Moreover, there was increased conversion of exogenous pregnenolone into cortisol by cells from previously anesthetized animals. It was therefore concluded that ACTH increases in a lasting way the activity of steroidogenic pathway leading to cortisol synthesis by adrenocortical cells at sites distal to cyclic AMP generation. Besides an obvious increase of formation of pregnenolone in response to ACTH, it seems that this ACTH-induced enhancement in the capacity of the steroidogenic response to ACTH also implies a prolonged stimulatory influence of the peptide on the post-pregnenolone steroidogenic pathway leading to cortisol synthesis.  相似文献   

16.
Ca2+ causes less than 2-fold elevations of guinea pig sperm cyclic AMP concentrations when cells are incubated in a minimal culture medium in the absence of bicarbonate (HCO3-). However, in the presence of HCO3-, Ca2+ increases cyclic AMP by as much as 25-fold within 1 min. The (Ca2+, HCO3-)-induced elevations occur in either the presence or absence of the permeant anions, pyruvate and lactate. In the absence of extracellular Ca2+, HCO3- elevates cyclic AMP only slightly. The effect of HCO3- is concentration-dependent, with maximal responses obtained at concentrations of greater than 25 mM. Ca2+ (25 mM HCO3-) at concentrations of less than 100 microM causes one-half-maximal elevations of cyclic AMP. The (Ca2+, HCO3-)-induced elevations of cyclic AMP are observed at various extracellular pH values (7.5-8.5) and in the presence or absence of extracellular Na+ or K+. NH4Cl does not elevate sperm cyclic AMP concentrations and does not greatly alter the (Ca2+, HCO3-)-induced elevations. the putative Ca2+ transport antagonist, D-600 (100 microM), completely blocks the (Ca2+, HCO3-)-induced elevations of cyclic AMP. A23187, in the presence but not in the absence of extracellular Ca2+, increases sperm cyclic AMP but does not further elevate cyclic AMP in HCO3(-)-treated cells. These studies establish that Ca2+-dependent elevations of cyclic AMp in guinea pig spermatozoa are dependent on the presence of HCO3- and suggest that HCO3- is required for the uptake (exchange) or membrane sequestration of small amounts of physiologically active Ca2+.  相似文献   

17.
In this study, the role of elevation of intracellular Ca2+ and activation of protein kinase C on adrenergic-stimulated cyclic nucleotide accumulation and melatonin synthesis in rat pinealocytes was investigated. It was found that whereas KCl, ionomycin, and ouabain, three Ca(2+)-elevating agents, had a potentiating effect on adrenergic-stimulated cyclic AMP response, their effects on melatonin synthesis were inhibitory. Similar inhibition was also observed when dibutyryl cyclic AMP was used to stimulate melatonin synthesis. By determining intracellular Ca2+ directly, it was found that the enhancing effects of these agents on the cyclic AMP response but not their inhibitory effects on melatonin synthesis paralleled their abilities to elevate intracellular Ca2+. In comparison, activation of protein kinase C significantly enhanced the adrenergic-stimulated cyclic AMP response and, to a lesser degree, the adrenergic-stimulated N-acetyltransferase and melatonin levels. These results indicate that (i) Ca(2+)-elevating agents have opposite effects on adrenergic-stimulated cyclic AMP and melatonin production; (ii) a post cyclic AMP event of importance to melatonin synthesis is inhibited by these agents; and (iii) the mechanism of inhibition may not be directly related to their effect on intracellular Ca2+.  相似文献   

18.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

19.
The present study reports the effects on lipolysis occurring in isolated rat epididymal adipocytes of several agents which have each been found to interfere with membrane calcium transport in a variety of tissues. As reported by other workers, the local tetracaine was a strong inhibitor of hormone accelerated but not of basal lipolysis. The bivalent cations Mn2+ and Co2+ were similarly found to inhibit lipolysis stimulated with either epinephrine, ACTH, theophylline or dibutyryl cyclic AMP, whereas basal lipolysis was not markedly altered. This effect of Mn2+ and Co2+ was not mimicked by either Sr2+, Ba2+, Mg2+ or Ca2+. Cyclic AMP levels in adipocytes stimulated with epinephrine or ACTH tended to be higher in the presence of Mn2+ and Co2+. It is concluded, therefore, that Mn2+ and Co2+ inhibit lipolysis by uncoupling cyclic AMP accumulation from activation of triglyceride lipase. In contrast to Mn2+ and Co2+, the calcium antagonists La3+ and D600 were without effect on lipolysis. The antilipolytic effect of tetracaine, Mn2+ and Co2+ was found to persist in the absence of extracellular calcium, suggesting therefore that the antilipolytic effect of these drugs is unrelated to inhibition of calcium influx into adipocytes. The possibility is discussed that lipolytic agents cause an intracellular redistribution of calcium ion and that local anesthetics, Mn2+ and Co2+ interfere with lipolysis by preventing this intracellular redistribution of calcium.  相似文献   

20.
The effect of cortisol on cyclic AMP production by crude bovine adrenal cortex membrane preparations has been investigated. Results demonstrate that in the presence of cortisol, cyclic AMP production in response to 1-24 ACTH was enhanced up to a concentration of about 74 microM cortisol. At higher concentrations the effect was reversed. Cortisol had no effect on cyclic AMP production in the absence of 1-24 ACTH, and cyclic AMP production was completely inhibited when 5 mM EDTA was added to the incubation tubes with the cortisol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号