首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PilQ secretin from the pathogenic bacterium Neisseria meningitidis is an integral outer membrane protein complex which plays a crucial role in the biogenesis of type IV pili. We present here the first three-dimensional structure of this type of secretin at 2.5-nm resolution, obtained by single-particle averaging methods applied to the purified protein complex visualized in a negative stain. In projection, the PilQ complex is circular, with a donut-like appearance. When viewed from the side it has a rounded, conical profile. The complex was demonstrated to have 12-fold rotational symmetry, and this property was used to improve the quality of the density map by symmetry averaging. The dominant feature of the structure is a cavity, 10 nm deep, within the center of the molecule. The cavity is funnel-shaped in cross section, measures 6.5 nm in diameter at the top of the complex, and tapers to a closed point, effectively blocking formation of a continuous pore through the PilQ complex. These results suggest that the complex would have to undergo a conformational change in order to accommodate an assembled pilus fiber of diameter 6.5 nm running through the outer membrane.  相似文献   

2.
3.
PilQ is a member of the secretin family of outer membrane proteins and is specifically involved in secretion of type IV pili in Neisseria meningitidis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The quaternary structure of PilQ from N. meningitidis was analyzed by transmission electron microscopy by using a negative stain. Single particle averaging was carried out with a total data set of 650 individual particles, which produced a projection map generated from 296 particles at an estimated resolution of 2.6 nm. Oligomeric PilQ adopts a donut-like structure with an external ring that is 16.5 nm in diameter surrounding a central cavity that is 6.5 nm in diameter. Self-rotation and power spectrum analysis demonstrated the presence of 12-fold rotational symmetry, showing that PilQ is organized as a ring of 12 identical subunits. A model of the type IV meningococcal pilus fiber, based on the X-ray crystal structure of the N. gonorrhoeae pilin subunit, fitted neatly into the cavity, demonstrating how PilQ could serve as a channel for the growing pilus fiber.  相似文献   

4.
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.  相似文献   

5.
Type IV pili (Tfp) are arguably the most widespread pili in bacteria, whose biogenesis requires a complex machinery composed of as many as 18 different proteins. This includes the conserved outer membrane-localized secretin, which forms a pore through which Tfp emerge on the bacterial surface. Although, in most model species studied, secretin oligomerization and functionality requires the action of partner lipoproteins, structural information regarding these molecules is limited. We report the high-resolution crystal structure of PilW, the partner lipoprotein of the type IV pilus secretin PilQ from Neisseria meningitidis, which defines a conserved class of Tfp biogenesis proteins involved in the formation and/or stability of secretin multimers in a wide variety of bacteria. The use of the PilW structure as a blueprint reveals an area of high-level sequence conservation in homologous proteins from different pathogens that could reflect a possible secretin-binding site. These results could be exploited for the development of new broad-spectrum antibacterials interfering with the biogenesis of a widespread virulence factor.  相似文献   

6.
Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two β-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second β-domain revealed an eight-stranded β-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/β fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/β domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/β domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the β-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.  相似文献   

7.
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.  相似文献   

8.
The bacterial pathogen Neisseria meningitidis expresses long, thin, retractile fibers (called type IV pili) from its cell surface and uses these adhesive structures to mediate primary attachment to epithelial cells during host colonization and invasion. PilQ is an outer membrane protein complex that is essential for the translocation of these pili across the outer membrane. Here, we present the structure of the PilQ complex determined by cryoelectron microscopy to 12 A resolution. The dominant feature of the structure is a large central cavity, formed by four arm features that spiral upwards from a squared ring base and meet to form a prominent cap region. The cavity, running through the center of the complex, is continuous and is effectively sealed at both the top and bottom. Analysis of the complex using self-orientation and by examination of two-dimensional crystals indicates a strong C4 rotational symmetry, with a much weaker C12 rotational symmetry, consistent with PilQ possessing true C4 symmetry with C12 quasi-symmetry. We therefore suggest that the complex is a homododecamer, formed by association of 12 PilQ polypeptide chains into a tetramer of trimers. The structure of the PilQ complex, with its large and well defined central chamber, suggests that it may not function solely as a passive portal in the outer membrane, but could be actively involved in mediating pilus assembly or modification.  相似文献   

9.
Type IV pili (Tfp) are a unique class of multifunctional surface organelles in Gram-negative bacteria, which play important roles in prokaryotic cell biology. Although components of the Tfp biogenesis machinery have been characterized, it is not clear how they function or interact. Using Neisseria gonorrhoeae as a model system, we report here that organelle biogenesis can be resolved into two discrete steps: fiber formation and translocation of the fiber to the cell surface. This conclusion is based on the capturing of an intermediate state in which the organelle is retained within the cell owing to the simultaneous absence of the secretin family member and biogenesis component PilQ and the twitching motility/pilus retraction protein PilT. This finding is the first demonstration of a specific translocation defect associated with loss of secretin function, and additionally confirms the role of PilT as a conditional antagonist of stable pilus fiber formation. These findings have important implications for Tfp structure and function and are pertinent to other membrane translocation systems that utilize a highly related set of components.  相似文献   

10.
Type IV pili are required for virulence in Neisseria gonorrhoeae, as they are involved in adherence to host epithelium, twitching motility, and DNA transformation. The outer membrane secretin PilQ forms a homododecameric ring through which the pilus is proposed to be secreted. pilQ null mutants are nonpiliated, and thus, all pilus-dependent functions are eliminated. Mutagenesis was performed on the middle one-third of pilQ, and mutants with colony morphologies consistent with the colony morphology of nonpiliated or underpiliated bacteria were selected. Nineteen mutants, each with a single amino acid substitution, were isolated and displayed diverse phenotypes in terms of PilQ multimer stability, pilus expression, transformation efficiency, and host cell adherence. The 19 mutants were grouped into five phenotypic classes based on functionality. Four of the five mutant classes fit the current model of pilus functionality, which proposes that a functional pilus assembly apparatus, not necessarily full-length pili, is required for transformation, while high levels of displayed pili are required for adherence. One class, despite having an underpiliated colony morphology, expressed high levels of pili yet adhered poorly, demonstrating that pilus expression is necessary but not sufficient for adherence and indicating that PilQ may be directly involved in host cell adherence. The collection of phenotypes expressed by these mutants suggests that PilQ has an active role in pilus expression and function.  相似文献   

11.
Plasmid R64 pilQ gene is essential for the formation of thin pilus, a type IV pilus. The pilQ product contains NTP binding motifs and belongs to the PulE-VirB11 family of NTPases. The pilQ gene was overexpressed with an N-terminal His tag, and PilQ protein was purified. Purified His tag PilQ protein displayed ATPase activity with a V(max) of 0.71 nmol/min/mg of protein and a K(m) of 0.26 mm at pH 6.5. By gel filtration chromatography, PilQ protein was eluted at the position corresponding to 460 kDa, suggesting that PilQ protein forms a homooctamer. To analyze the relationship between structure and function of PilQ protein, amino acid substitutions were introduced within several conserved motifs. Among 11 missense mutants, 7 mutants exhibited various levels of reduced DNA transfer frequencies in liquid matings. Four mutant genes (T234I, K238Q, D263N, and H328A) were overexpressed with a His tag. The purified mutant PilQ proteins contained various levels of reduced ATPase activity. Three mutant PilQ proteins formed stable multimers similar to wild-type PilQ, whereas the PilQ D263N multimer was unstable. PilQ D263N monomer exhibited low ATPase activity, while PilQ D263N multimer did not. These results indicate that ATPase activity of the PilQ multimer is essential for R64 thin pilus biogenesis.  相似文献   

12.
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram‐positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram‐negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram‐positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram‐positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus‐like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus‐related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.  相似文献   

13.
The type IV pilus filament of Myxococcus xanthus penetrates the outer membrane through a gated channel--the PilQ secretin. Assembly of the channel and formation of PilQ multimeric complexes that resist disassembly in heated detergent is correlated with the release of a 50 kDa fragment of PilQ. Tgl lipoprotein is required for PilQ assembly in M. xanthus, because PilQ monomers but no heat and detergent-resistant complexes are present in a strain from which tgl has been deleted. PilQ protein is often found in single patches at both poles of the cell. Tgl, however, is found in a patch at only one pole that most likely identifies the piliated cell pole. Tgl protein that has been transferred from another cell by contact stimulation leads to secretin assembly in the recipient. Pilus proteins PilQ, PilG, PilM, PilN, PilO and PilP are also required for the donation of Tgl by contact stimulation to a stimulation recipient. We suggest that these proteins are parts of a polar superstructure that holds PilQ monomers in a cluster and ready for Tgl to bring about secretin assembly.  相似文献   

14.
Expression of type IV pili (Tfp), filamentous appendages emanating from the bacterial surface, is indispensable for efficient neisserial transformation. Tfp pass through the secretin pore consisting of the membrane protein PilQ. PilG is a polytopic membrane protein, conserved in Gram-positive and Gram-negative bacteria, that is required for the biogenesis of neisserial Tfp. PilG null mutants are devoid of pili and non-competent for transformation. Here, recombinant full-length, truncated and mutated variants of meningococcal PilG were overexpressed, purified and characterized. We report that meningococcal PilG directly binds DNA in vitro, detected by both an electromobility shift analysis and a solid phase overlay assay. PilG DNA binding activity was independent of the presence of the consensus DNA uptake sequence. PilG-mediated DNA binding affinity was mapped to the N-terminus and was inactivated by mutation of residues 43 to 45. Notably, reduced meningococcal transformation of DNA in vivo was observed when PilG residues 43 to 45 were substituted by alanine in situ, defining a biologically significant DNA binding domain. N-terminal PilG also interacted with the N-terminal region of PilQ, which previously was shown to bind DNA. Collectively, these data suggest that PilG and PilQ in concert bind DNA during Tfp-mediated transformation.  相似文献   

15.
The highly conserved pilM/N/O/P/Q gene cluster is among the core set of genes required for cell surface expression of type IV pili and associated twitching motility. With the exception of the outer membrane secretin, a multimer of PilQ subunits, the specific functions of the products encoded by this gene cluster are poorly characterized. Orthologous proteins in the related bacterial type II secretion system have been shown to interact to form an inner membrane complex required for protein secretion. In this study, we provide evidence that the PilM/N/O/P proteins form a functionally equivalent type IVa pilus complex. Using Pseudomonas aeruginosa as model organism, we found that all four proteins, including the nominally cytoplasmic PilM, colocalized to the inner membrane. Stability studies via Western blot analyses revealed that loss of one component has a negative impact on the levels of other members of the putative complex. Furthermore, complementation studies revealed that the stoichiometry of the components is important for the correct formation of a stable complex in vivo. We provide evidence that an intact inner membrane complex is required for optimal formation of the outer membrane complex of the type IVa pilus system in P. aeruginosa, as PilQ stability is negatively affected in its absence. Finally, we show that, in the absence of the pilin subunit, the levels of membrane-bound components of the inner membrane complex are negatively regulated by the PilR/S two-component system, suggesting a role for PilR/S in sensing the piliation status of the cell.  相似文献   

16.
Type IV pili are surface-exposed filaments, which extend from a variety of bacterial pathogens and play a major role in pathogenesis, motility, and DNA uptake. Here, we present the crystal structure of a complex between a cytoplasmic component of the type IV pilus biogenesis system from Thermus thermophilus, PilM, in complex with a peptide derived from the cytoplasmic portion of the inner membrane protein PilN. PilM also binds ATP, and its structure is most similar to the actin-like protein FtsA. PilN binds in a narrow channel between the 1A and 1C subdomains in PilM; the binding site is well conserved in other gram-negative bacteria, notably Neisseria meningitidis, Pseudomonas aeruginosa, and Vibrio cholerae. We find no evidence for the catalysis of ATP hydrolysis by PilM; fluorescence data indicate that the protein is likely to be saturated by ATP at physiological concentrations. In addition, binding of the PilN peptide appears to influence the environment of the ATP binding site. This is the first reported structure of a complex between two type IV pilus biogenesis proteins. We propose a model in which PilM binds ATP and then PilN as one of the first steps in the formation of the inner membrane platform of the type IV pilus biogenesis complex.  相似文献   

17.
Gram-negative bacteria need to be able to transport a large variety of macromolecules across their outer membranes. In Escherichia coli, the passage of the group 1 capsular polysaccharide is mediated by an integral outer membrane protein, Wza. The crystal structure of Wza, determined recently, reveals a novel transmembrane alpha-helical barrel and a large central cavity within the core of the vase-shaped protein complex. The structure has similarities with that of the secretin protein, PilQ, which mediates the transition of type IV pili across the outer membrane. We propose that the large internal chamber, which can accommodate the secreted assembled macromolecule, is likely to be a common feature found in other outer membrane proteins involved in secretion processes.  相似文献   

18.
The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg2+, was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker‐A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N‐terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped‐down ‘active site’. Homology modelling of the N‐terminal atypical receiver domain of CpaE indicates that it has a conserved protein–protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.  相似文献   

19.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号