首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells and mitochondria were prepared from the brown adipose tissue of adult guinea-pigs adapted to either 4-7 degrees C or 22-25 degrees C. The cold-adapted cells displayed noradrenaline-stimulated, propranolol-sensitive respiration, but noradrenaline failed to increase the respiration of the warm-adapted cells. Purine-nucleotide-sensitive proton conductance was greater in cold-adapted mitochondria than in warm-adapted controls. At the same time cold-adapted mitochondria were extremely sensitive to the uncoupling effect of endogenous and infused fatty acids, and resembled the mitochondria from the brown adipose tissue of cold-adapted hamsters. Warm-adapted mitochondria were ninefold less sensitive, and resembled liver mitochondria. With cold-adapted, but not warm-adapted mitochondria, respiration increased proportionately to the rate of fatty acid infusion. It is concluded that the presence of the 32000-Mr proton conductance pathway is necessary for the expression of a high sensitivity to fatty acid uncoupling, suggesting that the fatty acids interact directly with this protein to modulate the proton conductance during the acute regulation of thermogenesis.  相似文献   

2.
The effects of exogenous fatty acids and hypoxia on cardiac energy metabolism were studied by measuring mitochondrial and cytosolic adenine nucleotides as well as CoA and carnitine esters using a tissue fractionation technique in non-aqueous solvents. During normoxia, the administration of 0.5 mM palmitate caused a considerable increase in acyl-CoA and acylcarnitine, particularly in mitochondria. High-energy phosphates, however, were only slightly altered. A 90 min low-flow hypoxia caused a dramatic increase in mitochondrial acyl esters. The mitochondrial ATP content decreased significantly, while the cytosolic concentration was only slightly diminished, suggesting an inhibition of mitochondrial adenine nucleotide translocation by long-chain acyl-CoA. Addition of palmitate during hypoxia amplified hypoxic damage and reduced adenine nucleotides in both compartments considerably, while fatty acid metabolites were only slightly affected. In presence of an inhibitor of fatty acid oxidation (BM 42.304), the fatty-acid-induced acceleration of cardiac injury was prevented. Since BM 42.304 decreased mitochondrial acylcarnitine and increased the cytosolic concentration significantly, BM 42.304 was presumed to inhibit mitochondrial acylcarnitine translocase. However, a causal relationship between lipid metabolites and ischemic damage seemed unlikely.  相似文献   

3.
The role of 3,5-diiodo-L-thyronine (T2), initially considered only a 3,3′,5-triiodo-L-thyronine (T3) catabolite, in the bioenergetic metabolism is of growing interest. In this study we investigated the acute effects (within 1 h) of T2 administration to hypothyroid rats on liver mitochondria fatty acid uptake and β-oxidation rate, mitochondrial efficiency (by measuring proton leak) and mitochondrial oxidative damage (by determining H2O2 release). Fatty acid uptake into mitochondria was measured assaying carnitine palmitoyl transferase (CPT) I and II activities, and fatty acid β-oxidation using palmitoyl-CoA as a respiratory substrate. Mitochondrial fatty acid pattern was defined by gas-liquid chromatography. In hypothyroid + T2 vs hypothyroid rats we observed a raise in the serum level of nonesterified fatty acids (NEFA), in the mitochondrial CPT system activity and in the fatty acid β-oxidation rate. A parallel increase in the respiratory chain activity, mainly from succinate, occurs. When fatty acids are chelated by bovine serum albumin, a T2-induced increase in both state 3 and state 4 respiration is observed, while, when fatty acids are present, mitochondrial uncoupling occurs together with increased proton leak, responsible for mitochondrial thermogenesis. T2 administration decreases mitochondrial oxidative stress as determined by lower H2O2 production. We conclude that in rat liver mitochondria T2 acutely enhances the rate of fatty acid β-oxidation, and the activity of the downstream respiratory chain. The T2-induced increase in proton leak may contribute to mitochondrial thermogenesis and to the reduction of oxidative stress. Our results strengthen the previously reported ability of T2 to reduce adiposity, dyslipidemia and to prevent liver steatosis.  相似文献   

4.
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.  相似文献   

5.
It has previously been shown that mitochondrial proton conductance decreases with increasing body mass in mammals and is lower in a 250-g lizard than the laboratory rat. To examine whether mitochondrial proton conductance is extremely low in very large reptiles, hepatocytes and mitochondria were prepared from saltwater crocodiles ( Crocodylus porosus) and freshwater crocodiles ( Crocodylus johnstoni). Respiration rates of hepatocytes and liver mitochondria were measured at 37 degrees C and compared with values obtained for rat or previously measured for other species. Respiration rates of hepatocytes from either species of crocodile were similar to those reported for lizards and approximately one fifth of the rates measured using cells from mammals (rat and sheep). Ten-to-thirty percent of crocodile hepatocyte respiration was used to drive mitochondrial proton leak, similar to the proportion in other species. Respiration rates of crocodile liver mitochondria were similar to those of mammalian species. Proton leak rate in isolated liver mitochondria was measured as a function of membrane potential. Contrary to our prediction, the mitochondrial proton conductance of liver mitochondria from crocodiles was greater than that of liver mitochondria from lizards and was similar to that of rats. The acyl composition of liver mitochondrial phospholipids from the crocodiles was more similar to that in mitochondria from rats than in mitochondria from lizards. The relatively high mitochondrial proton conductance was associated with a relatively small liver, which seems to be characteristic of crocodilians. Comparison of data from a number of diverse ectothermic species suggested that hepatocyte respiration rate may decrease with body mass, with an allometric exponent of about -0.2, similar to the exponent in mammalian hepatocytes. However, unlike mammals, liver mitochondrial proton conductance in ectotherms showed no allometric relationship with body size.  相似文献   

6.
Effects of fatty acids on mitochondria: implications for cell death   总被引:7,自引:0,他引:7  
Fatty acids have prominent effects on mitochondrial energy coupling through at least three mechanisms: (i) increase of the proton conductance of the inner mitochondrial membrane; (ii) respiratory inhibition; (iii) opening of the permeability transition pore (PTP). Furthermore, fatty acids physically interact with membranes and possess the potential to alter their permeability; and they are also excellent respiratory substrates that feed electrons into the respiratory chain. Due to the complexity of their actions, the effects of fatty acids on mitochondrial function in situ are difficult to predict. We have investigated the mitochondrial and cellular effects of fatty acids of increasing chain length and degree of unsaturation in relation to their potential to affect mitochondrial function in situ and to cause cell death. We show that saturated fatty acids have little effect on the mitochondrial membrane potential in situ, and display negligible short-term cytotoxicity for Morris Hepatoma 1C1 cells. The presence of double bonds increases both the depolarizing effects and the cytotoxicity, but these effects are offset by the hydrocarbon chain length, so that more unsaturations are required to observe an effect as the hydrocarbon chain length is increased. With few exceptions, depolarization and cell death are due to opening of the PTP rather than to the direct effects of fatty acids on energy coupling.  相似文献   

7.
The following effects of fatty acids and acyl-CoA thioesters on energy metabolism of mitochondria can now be assumed: (1) Inhibition of adenine nucleotide translocation. This effect may increase the energy state of mitochondria respiring under state 3 conditions and decrease phosphorylation potential in the surrounding medium (the cytoplasm). (2) Increased permeability to monovalent cations. This may lead to a partial energy dissipation due to a futile recycling of K+ (or another cation), namely and energy-dependent uptake and a passive outflow. (3) True uncoupling due to increased permeability to protons. This effect probably occurs at high concentrations of fatty acids only. (4) Substrate effect. Fatty acids in the form of acyl-CoA are excellent respiratory substrates for mitochondria of most tissues. Their oxidation is coupled to the generation of high energy state of the mitochondrial membrane and, consequently, to ATP synthesis.  相似文献   

8.
Brown fat is a thermogenic organ that allows newborns and small mammals to maintain a stable body temperature when exposed to cold. The heat generation capacity is based on the uncoupling of respiration from ATP synthesis mediated by the uncoupling protein UCP1. The first studies on the properties of these mitochondria revealed that fatty acid removal was an absolute prerequisite for respiratory control. Thus fatty acids, that are substrate for oxidation, were proposed as regulators of respiration. However, their ability to uncouple all types of mitochondria and the demonstration that several mitochondrial carriers catalyze the translocation of the fatty acid anion have made them unlikely candidates for a specific role in brown fat. Nevertheless, data strongly argue for a physiological function. First, fatty acids mimic the noradrenaline effects on adipocytes. Second, there exists a precise correlation between fatty acid sensitivity and the levels of UCP1. Finally, fatty acids increase the conductance by facilitating proton translocation, a mechanism that is distinct from the fatty acid uncoupling mediated by other mitochondrial carriers. The regulation of UCP1 and UCP2 by retinoids and the lack of effects of fatty acids on UCP2 or UCP3 are starting to set differences among the new uncoupling proteins.  相似文献   

9.
Mitochondria of the amoeba Acanthamoeba castellanii possess a free fatty acid-activated uncoupling protein (AcUCP) that mediates proton re-uptake driven by the mitochondrial proton electrochemical gradient. We show that AcUCP activity diverts energy from ATP synthesis during state 3 mitochondrial respiration in a fatty acid-dependent way. The efficiency of AcUCP in mitochondrial uncoupling increases when the state 3 respiratory rate decreases as the AcUCP contribution is constant at a given linoleic acid concentration while the ATP synthase contribution decreases with respiratory rate. Respiration sustained by this energy-dissipating process remains constant at a given linoleic acid concentration until more than 60% inhibition of state 3 respiration by n-butyl malonate is achieved. The present study supports the validity of the ADP/O method to determine the actual contributions of AcUCP (activated with various linoleic acid concentrations) and ATP synthase in state 3 respiration of A.castellanii mitochondria fully depleted of free fatty acid-activated and describes how the two contributions vary when the rate of succinate dehydrogenase is decreased by succinate uptake limitation.  相似文献   

10.
In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria.  相似文献   

11.
The time-course for the induction of the uncoupling pathway in the inner membrane of brown-fat mitochondria from cold-adapting guinea pigs was studied. The amount of the protein was quantified from the capacity for high-affinity binding of GDP to the intact mitochondria, and was compared with the functional parameters diagnostic of the protein, namely the nucleotide-sensitive proton conductance and the sensitivity to uncoupling by low concentrations of fatty acids. A monophasic increase in nucleotide titre was observed, with no evidence of an early 'unmasking' of preexisting nucleotide-binding sites. The nucleotide-sensitive conductance increased in precise synchrony with the nucleotide-binding capacity. Mitochondria from newborn animals, and those from acutely cold-adapted animals, showed anomalously low sensitivities to uncoupling by fatty acids.  相似文献   

12.
We have determined the relationship between rate of respiration and protonmotive force in oligomycin-inhibited liver mitochondria isolated from euthyroid, hypothyroid and hyperthyroid rats. Respiration rate was titrated with the respiratory-chain inhibitor malonate. At any given respiration rate mitochondria isolated from hypothyroid rats had a protonmotive force greater than mitochondria isolated from euthyroid controls, and mitochondria isolated from hyperthyroid rats had a protonmotive force less than mitochondria isolated from euthyroid controls. In the absence of malonate mitochondrial respiration rate increased in the order hypothyroid less than euthyroid less than hyperthyroid, while protonmotive force increased in the order hyperthyroid less than euthyroid less than hypothyroid. These findings are consistent with a thyroid-hormone-induced increase in the proton conductance of the inner mitochondrial membrane or a decrease in the H+/O ratio of the respiratory chain at any given protonmotive force. Thus the altered proton conductance or H+/O ratio of mitochondria isolated from rats of different thyroid hormone status controls the respiration rate required to balance the backflow of protons across the inner mitochondrial membrane. We discuss the possible relevance of these findings to the control of state 3 and state 4 respiration by thyroid hormone.  相似文献   

13.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

14.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   

15.
Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (DeltaPsim), we studied the effects of fatty acids on DeltaPsim regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support DeltaPsim. In comparison, long-chain activated fatty acids promoted 1). a slower depolarization that was not reversible with BSA, 2). cytochrome c loss that was unrelated to permeability transition pore opening, and 3). inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.  相似文献   

16.
Microsomal membrane preparations from rat lung catalyse the incorporation of radioactive linolenic acid from [14C]linolenoyl-CoA into position 2 of sn-phosphatidylcholine. The incorporation was stimulated by bovine serum albumin and free CoA. Free fatty acids in the incubation mixtures were not utilised in the incorporation into complex lipids. Fatty acids were transferred to the acyl-CoA pool during the incorporation of linolenic acid into phosphatidylcholine. An increase in lysophosphatidylcholine occurred in incubations containing both bovine serum albumin and free CoA and in the absence of acyl-CoA. The results were consistent with an acyl-CoA: lysophosphatidylcholine acyltransferase operating in both a forwards and backwards direction and thus catalysing the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine. In incubations with mixed species of acyl-CoAs, palmitic acid was the major fatty acid substrate transferred to phosphatidylcholine in acyl exchange, whereas this acid was completely selected against in the acylation of added lysophosphatidylcholine. The selectivity for palmitoyl-CoA was particularly enhanced when the mixed acyl-CoA substrate was presented to the microsomes in molar concentrations equivalent to the molar ratios of the fatty acids in position 2 of sn-phosphatidylcholine. During acyl exchange, the predominant fatty acid transferred to phosphatidylcholine from acyl-CoA was palmitic acid, whereas arachidonic acid was particularly selected for in the reverse reaction from phosphatidylcholine to acyl-CoA. A hypothesis is presented to explain the differential selectivity for acyl species between the forward and backward reactions of the acyltransferase that is based upon different affinities of the enzyme for substrates at high and low concentrations of acyl donor. Acyl exchange between acyl-CoA and phosphatidylcholine offers, therefore, a possible mechanism for the acyl-remodelling of phosphatidylcholine for the production of lung surfactant.  相似文献   

17.
Low concentrations of beta-bungarotoxin or bee-venom phospholipase A2 cause a progressive Ca2+-dependent increase in the proton permeability of the mitochondria within the synaptosomal cytosol, manifested as an increase in oligomycin-insensitive respiration and a partial depolarization of the mitochondrial membrane potential. This uncoupling appears to be a consequence of fatty acids liberated by phospholipase A2 activity at the plasma membrane, since it can be mimicked by the addition of oleate-albumin complexes, in which case there is no requirement for external Ca2+. Dendrotoxin does not affect the mitochondrial proton permeability in situ, but protects partially against the uncoupling action of beta-bungarotoxin. In contrast, this effect of bee-venom phospholipase A2 is unaffected by dendrotoxin. beta-Bungarotoxin, but not bee-venom phospholipase A2, induces a slow progressive depolarization of the plasma membrane. The action of beta-bungarotoxin at the plasma membrane appears not to be related to fatty acid production, since it is augmented rather than inhibited by raising albumin concentrations in the medium. It is concluded that beta-bungarotoxin has at least two actions on intact synaptosomes, both of which may involve interaction at the plasma membrane with a site common to dendrotoxin: first, a mitochondrial uncoupling mediated by fatty acids and, secondly, a depolarization at the plasma membrane.  相似文献   

18.
Mitochondrial UCPs: new insights into regulation and impact   总被引:6,自引:0,他引:6  
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins sustaining an inducible proton conductance. They weaken the proton electrochemical gradient built up by the mitochondrial respiratory chain. Brown fat UCP1 sustains a free fatty acid (FA)-induced purine nucleotide (PN)-inhibited proton conductance. Inhibition of the proton conductance by PN has been considered as a diagnostic of UCP activity. However, conflicting results have been obtained in isolated mitochondria for UCP homologues (i.e., UCP2, UCP3, plant UCP, and protist UCP) where the FFA-activated proton conductance is poorly sensitive to PN under resting respiration conditions. Our recent work clearly indicates that the membranous coenzyme Q, through its redox state, represents a regulator of the inhibition by PN of FFA-activated UCP1 homologues under phosphorylating respiration conditions. Several physiological roles of UCPs have been suggested, including a control of the cellular energy balance as well as the preventive action against oxidative stress. In this paper, we discuss new information emerging from comparative proteomics about the impact of UCPs on mitochondrial physiology, when recombinant UCP1 is expressed in yeast and when UCP2 is over-expressed in hepatic mitochondria during steatosis.  相似文献   

19.
Fatty acid beta-oxidation is a key process in mammalian lipid catabolism. Disturbance of this process results in severe clinical symptoms, including dysfunction of the liver, a major beta-oxidizing tissue. For a thorough understanding of this process, a comprehensive analysis of involved fatty acid and acyl-carnitine intermediates is desired, but capable methods are lacking. Here, we introduce oxaalkyne and alkyne fatty acids as novel tracers to study the beta-oxidation of long- and medium-chain fatty acids in liver lysates and primary hepatocytes. Combining these new tracer tools with highly sensitive chromatography and mass spectrometry analyses, this study confirms differences in metabolic handling of fatty acids of different chain length. Unlike longer chains, we found that medium-chain fatty acids that were activated inside or outside of mitochondria by different acyl-CoA synthetases could enter mitochondria in the form of free fatty acids or as carnitine esters. Upon mitochondrial beta-oxidation, shortened acyl-carnitine metabolites were then produced and released from mitochondria. In addition, we show that hepatocytes ultimately also secreted these shortened acyl chains into their surroundings. Furthermore, when mitochondrial beta-oxidation was hindered, we show that peroxisomal beta-oxidation likely acts as a salvage pathway, thereby maintaining the levels of shortened fatty acid secretion. Taken together, we conclude that this new method based on oxaalkyne and alkyne fatty acids allows for metabolic tracing of the beta-oxidation pathway in tissue lysate and in living cells with unique coverage of metabolic intermediates and at unprecedented detail.  相似文献   

20.
1. Fatty n-acyl-CoA derivatives in the concentration range 5muM-0.1mM and with 5-18 fatty acyl carbons have dual effects on phosphate-activated glutaminase from pig brain and kidney. Generally, fatty acyl-CoA derivatives in low concentrations activate the enzyme, but inhibit at higher concentrations; phosphate and citrate potentiate the activation, displaying positive co-operatively, and protect against inactivation. The fatty acyl-CoA derivatives affect glutaminase similarly to Bromothymol Blue, but differently from acetyl-CoA, which activates the enzyme only at very low phosphate or citrate concentrations. 2. Saturated fatty acyl-CoA derivatives, with 5-10 fatty acyl carbons, only activate the enzyme in the concentration range 0-0.1 mM. When the fatty acyl chain is elongated, the fatty acyl-CoA derivatives gradually become more powerful inhibitors of glutaminase at the expense of their activating capacity. In particular, palmitoyl-CoA and stearoyl-CoA are strong inhibitors at concentrations (10 muM) at which the corresponding free fatty acids and fatty acyl-carnitine derivatives have no effect. 3. The unsaturated fatty acyl-CoA derivatives, oleoyl-CoA and linoleoyl-CoA, behave as potent activators in the lower part of the concentration range tested (0-0.05mM), and as inhibitors in the upper part of this range (0.02-0.10mM). Oleic acid and linoleic acid have similar properties, but their activating capacity is less pronounced. 4. Phosphate both prevented and reversed the inhibition, but no restoration of activity was possible once the enzyme became inactivated. 5. By changing the pH from 7.0 to 8.0 the activating capacity of the fatty acyl-CoA derivatives is increased, as is their concentration range for activation. 6. The fatty acyl-CoA derivatives are somewhat more potent activator for brain glutaminase, but otherwise they affect the two enzymes similarly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号