共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Young I 《Nature biotechnology》2003,21(3):339-340
7.
8.
Zhang W 《Progress in biophysics and molecular biology》2007,93(1-3):309-313
Three talks were presented in the session on “Epidemiology”. The first talk was a review of prenatal studies. The second talk presented epidemiological evidence from prenatal studies. The third talk presented general issues regarding the planning of an epidemiological study. It was noted that epidemiological studies of prenatal exposures use data from the early 1980s when ultrasound was first introduced for foetal scans. These studies did not show associations between prenatal ultrasound scanning and childhood cancer, reduced birth weight, impaired childhood growth or neurological development in childhood. However, there was a possible association between prenatal ultrasound scanning and left-handedness in boys. The aetiology of this association remains uncertain. 相似文献
9.
10.
In the celebration of the Oswaldo Cruz Institute centenary, we wanted to stress our concern with the relationship between two of its missions: research and education. What are the educational bases required for science and technology activities on health sciences for the future years? How can scientists collaborate to promote the popularization of academic knowledge and to improve a basic education for citizenship in an ethic and humanistic view? In this article we pointed out to need of commitment, even in the biomedical post-graduation level, of a more integrated philosophy that would be centered on health education, assuming health as a dynamic biological and social equilibrium and emphasizing the need of scientific popularization of science in a cooperative construction way, instead of direct transfer of knowledge, preserving also macro views of health problems in the development of very specific studies. The contemporary explosion of knowledge, particularly biological knowledge, imposes a need of continuous education to face the growing illiteracy. In order to face this challenge, we think that the Oswaldo Cruz Institute honors his dialectic profile of tradition and transformation, always creating new perspectives to disseminate scientific culture in innovator forms. 相似文献
11.
Ecoinformatics: supporting ecology as a data-intensive science 总被引:2,自引:0,他引:2
Ecology is evolving rapidly and increasingly changing into a more open, accountable, interdisciplinary, collaborative and data-intensive science. Discovering, integrating and analyzing massive amounts of heterogeneous data are central to ecology as researchers address complex questions at scales from the gene to the biosphere. Ecoinformatics offers tools and approaches for managing ecological data and transforming the data into information and knowledge. Here, we review the state-of-the-art and recent advances in ecoinformatics that can benefit ecologists and environmental scientists as they tackle increasingly challenging questions that require voluminous amounts of data across disciplines and scales of space and time. We also highlight the challenges and opportunities that remain. 相似文献
12.
13.
14.
GUY MIDGLEY 《Journal of Biogeography》2002,29(7):971-972
15.
Lee KH 《Trends in biotechnology》2001,19(6):217-222
An emerging field for the analysis of biological systems is the study of the complete protein complement of the genome, the 'proteome'. There are several complementary tools available for proteome analysis including 2D protein electrophoresis and mass spectrometry. Emerging technologies for proteome analysis include spotted-array-based methods and microfluidic devices. Taken together, these technologies provide a wealth of information that is useful in discovery-based science. However, there are some key limitations of these approaches and new technology is required to be able to fully integrate proteomic information with information obtained about DNA sequence, mRNA profiles and metabolite concentrations into effective models of biological systems. 相似文献
16.
17.
European plant science: a field of opportunities 总被引:4,自引:1,他引:4
European Plant Science Organization 《Journal of experimental botany》2005,56(417):1699-1709
Plants have a pivotal role in eco- and agricultural systems.Genomics is driving a rapid expansion of our understanding ofhow genes, individually and in networks, determine plant function.Technological developments in breeding and genomics are providingstrategies to translate this knowledge into crop improvement.The possibilities range from improvement of existing crops andthe systematic use of natural diversity through to the domesticationof completely new species. As examples of possible goals, itis discussed how profiling of composition will integrate plantbreeding and agronomic practice with emerging knowledge aboutnutrition and health, how improved and novel crops will contributeto the creation of new bio-based economies revolving aroundplant products, and how advances in our knowledge about plantenvironmentand plantpathogen interactions will provide novel strategiesto stabilize agricultural yield in a fluctuating environmentand contribute to integrated approaches in which modern agricultureis carried out in concert with the environment. In addition,knowledge generated by plant science will be needed to monitor,understand, and cope with climate change and its impact on agricultureand ecosystems. Realization of these goals will require closeinteractions with related disciplines including agronomy andecology. Further, it will be important to continue and deepenopen support for research in the developing world. Key words: Agronomic practice, biodiversity, domestication, ecosystems, environment, genomics, novel crops, plant breeding, plant products, yield 相似文献
18.
This paper is a tribute to the scientific accomplishments of Ernst Chain and the influence he exerted over the fields of industrial microbiology and biotechnology. Chain is the father of the modern antibiotic era and all the benefits that these therapeutic agents have brought, i.e., longer life spans, greater levels of public health, widespread modern surgery, and control of debilitating infectious diseases, including tuberculosis, gonorrhea, syphilis, etc. Penicillin was the first antibiotic to become commercially available, and its use ushered in the age of antibiotics. The discovery of penicillin’s bactericidal action had been made by Alexander Fleming in London in 1928. After publishing his observations in 1929, no further progress was made until the work was picked up in 1939 by scientists at Oxford University. The group was headed by Howard Florey, and Chain was the group’s lead scientist. Chain was born and educated in Germany, and he fled in 1933 as a Jewish refugee from Nazism to England. Other important members of the Oxford research team were Norman Heatley and Edward Abraham. The team was able to produce and isolate penicillin under conditions of scarce resources and many technical challenges. Sufficient material was collected and tested on mice to successfully demonstrate penicillin’s bactericidal action on pathogens, while being nontoxic to mammals. Chain directed the microbiological methods for producing penicillin and the chemical engineering methods to extract the material. This technology was transferred to US government facilities in 1941 for commercial production of penicillin, becoming an important element in the Allied war effort. In 1945, the Nobel Prize for medicine was shared by Fleming, Florey, and Chain in recognition of their work in developing penicillin as a therapeutic agent. After World War II, Chain tried to persuade the British government to fund a new national antibiotic industry with both research and production facilities. As resources were scarce in postwar Britain, the British government declined the project. Chain then took a post in 1948 at Rome’s Instituto Superiore di Sanitá, establishing a new biochemistry department with a pilot plant. During that period, his department developed important new antibiotics (including the first semisynthetic antibiotics) as well as improved technological processes to produce a wide variety of important microbial metabolites that are still in wide use today. Chain was also responsible for helping several countries to start up a modern penicillin industry following World War II, including the Soviet Union and the People’s Republic of China. In 1964, Chain returned to England to establish a new biochemistry department and industrial scale fermentation pilot plant at Imperial College in London. Imperial College became the preeminent biochemical department in Europe. Chain was also a pioneer in changing the relationship between government, private universities, and private industry for collaboration and funding to support medical research. Ernst Chain has left a lasting impact as a great scientist and internationalist. 相似文献
19.