首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane location and mechanism of inositol 1,3,4,5-tetrakisphosphate (InsP4)-regulated Ca2+ uptake in cardiac membrane vesicles was investigated. In canine and rat membranes separated by sucrose density gradient centrifugation, InsP4-regulated Ca2+ uptake was slightly more enriched in low density than in higher density membranes. Membranes supporting InsP4-regulated Ca2+ uptake were correspondingly enriched in type 1 InsP3 receptors. Junctional sarcoplasmic reticulum (J-SR), enriched in sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and ryanodine receptors, separated predominantly with higher density membranes. In membranes supporting InsP4-regulated Ca2+ uptake, Ca2+ uptake was facilitated by a high Ca2+ affinity carrier that was insensitive to thapsigargin. Ca2+ uptake in J-SR was mediated by thapsigargin-sensitive SERCA2a. Net Ca accumulation was enhanced by oxalate in both SR subtypes. Although Ca2+-carrier-mediated Ca2+ uptake was ATP independent, ATP indirectly regulated net Ca2+ accumulation by modifying Ca2+ efflux via a Ca2+ channel with properties of type 1 InsP3 receptors. In the presence of < or = 0.1 mM ATP, InsP4 enhanced Ca2+ accumulation whereas InsP4 inhibited Ca2+ uptake at higher ATP concentrations. In the presence of 0.15 mM ATP, InsP4 stimulated Ca2+ efflux from vesicles preloaded with Ca. Several other InsP4 isomers and 1,3,4-InsP3 also stimulated Ca2+ efflux but with slightly less potency than 1,3,4,5-InsP4. Ruthenium red enhanced net Ca accumulation by the Ca2+ carrier and reduced the potency of ATP, InsP4, and InsP3 to stimulate Ca2+ efflux in vesicles. In summary, this investigation shows that a Ca2+ carrier facilitates Ca loading in a sarcoplasmic reticulum subtype distinct from J-SR. InsP4 and InsP3 are proposed to regulate Ca2+ efflux in low density SR by acting on an ATP-modulated Ca2+ channel with properties of type 1 InsP3 receptors.  相似文献   

2.
Characteristics of Ca2+ uptake were studied in a vesicular preparation of proximal tubule plasma membranes from rabbit kidney and compared with the properties of both membrane-bound and solubilized Ca2+-ATPase activities. Calcium uptake required both ATP and MgCl2 and revealed two kinetic components with respect to Ca2+ concentration requirements, one with a high affinity for Ca2+ (1.8 microM), operative in the range of cytosolic Ca2+ activity, and one with a low affinity for Ca2+ (250 microM) which may become active only at abnormally high cytosolic Ca2+ concentrations. The high- and low-affinity components were stimulated to similar extents by phosphate, and required similar concentrations of ATP (0.6 mM) for half-maximal activity. The amount of membrane-bound phosphoenzyme formed from ATP in the presence of Ca2+ was the same regardless of whether only one or both sites were saturated, suggesting that occupancy of the second Ca2+ binding site accelerates the enzyme turnover. Inhibition of Ca2+ transport by Na+ was reversed by the addition of ouabain or an ATP-regenerating system, indicating that this inhibitory effect of Na+ on Ca2+ uptake may be due to the accumulation of ADP in the medium as a result of Na+ pump activity. Low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhydrazone and valinomycin (2.5 and 1 microM, respectively) were without effect on Ca2+ uptake in the presence of phosphate, whereas higher concentrations of the ionophores (200 and 100 microM, respectively) reduced uptake by 60% or more. The calmodulin antagonist 48/80 also reduced Ca2+ uptake with half-maximal effectiveness at 100 micrograms/ml. None of these drugs affected either ATPase activity or the EGTA-induced Ca2+ efflux from preloaded vesicles. The Ca2+ dependence of ATP hydrolysis by the membrane-bound enzyme preparation was similar to that observed for Ca2+ uptake by the vesicles. However, with solubilized enzyme, concentrations of Ca2+ similar to that found in the plasma reduced Ca2+-stimulated ATP hydrolysis to one-half of its maximal rate. This indicates that peritubular Ca2+ may play a role in the regulation of Ca2+ transport across the tubular epithelium. ATP could not be replaced by ITP as a substrate for Ca2+ uptake, and the (Ca2+ + Mg2+)ITPase activity of soluble enzyme was 25-fold lower than in the presence of ATP. This is an indication that the active Ca2+ pumping mechanism in proximal tubules is critically dependent on the nucleoside moiety of the substrate.  相似文献   

3.
Exogenous ATP enhances calcium influx in intact thymocytes   总被引:3,自引:0,他引:3  
Recent observations have indicated that exogenous adenosine triphosphate (ATP) may influence lymphocyte functions such as proliferation and cytoxicity. Here we report a novel activity of extracellular ATP--it specifically increases Ca2+ uptake in murine lymphocytes. ATP added to thymocytes increases the rate of [45Ca2+] uptake by up to 20-fold. The increased rate is seen with ATP concentrations as low as 500 microM and is half-maximal at approximately 2 mM ATP. The magnitude of stimulation by ATP is dependent on Mg2+ concentration, and ATP-Mg2+ complex is probably the true activator. Of the high-energy phosphate-containing compounds tested, including deoxy-ATP, only GTP showed a modest stimulation of calcium uptake. ADP, AMP, cyclic AMP, and adenosine did not significantly increase calcium uptake. Cellular integrity as indicated by trypan blue exclusion and ethidium bromide/acridine orange staining was unaffected by ATP. Ca2+ influx is the major mode of action of ATP in raising intrathymocyte Ca2+ levels, because neither the Ca2+ efflux nor the [45Ca2+]-Ca2+ exchange was significantly altered in the presence of ATP. Verapamil, a Ca2+ channel blocking agent, could not prevent the ATP effect, suggesting that ATP may be acting by a mechanism other than the voltage-dependent Ca2+ channel. An analysis of intracellular and extracellular ATP levels by chemiluminescence assay indicated no significant ATP entry into intact lymphocytes. Also, ATP added to the medium containing thymocytes was destroyed (approximately 50% by 20 min). The nonhydrolyzable ATP analogs, AMPPCP and AMPPNP, were unable to stimulate a significant amount of Ca2+ uptake, suggesting the involvement of a cell surface phosphotransferase activity. This was supported by the demonstration of a threefold to fivefold increase in the labeling of protein and phospholipid fractions obtained from intact thymocytes exposed to [gamma 32P]ATP for 30 min. Ca2+ is believed to play an important role in a variety of lymphocyte functions, including mitogenesis and natural killer cell activity. The data herein thus provide a potential mechanism for the action of exogenous ATP on these lymphocyte functions.  相似文献   

4.
Transport of calcium ions by Ehrlich ascites-tumour cells.   总被引:5,自引:3,他引:2       下载免费PDF全文
Ehrlich ascites-tumour cells accumulate Ca2+ when incubated aerobically with succinate, phosphate and rotenone, as revealed by isotopic and atomic-absorption measurements. Ca2+ does not stimulate oxygen consumption by carefully prepared Ehrlich cells, but des so when the cells are placed in a hypo-osmotic medium. Neither glutamate nor malate support Ca2+ uptake in 'intact' Ehrlich cells, nor does the endogenous NAD-linked respiration. Ca2+ uptake is completely dependent on mitochondrial energy-coupling mechansims. It was an unexpected finding that maximal Ca2+ uptake supported by succinate requires rotenone, which blocks oxidation of enogenous NAD-linked substrates. Phosphate functions as co-anion for entry of Ca2+. Ca2+ uptake is also supported by extra-cellular ATP; no other nucleoside 5'-di- or tri-phosphate was active. The accumulation of Ca2+ apparently takes place in the mitochondria, since oligomycin and atractyloside inhibit ATP-supported Ca2+ uptake. Glycolysis does not support Ca2+ uptake. Neither free mitochondria released from disrupted cells nor permeability-damaged cells capable of absorbing Trypan Blue were responsible for any large fraction of the total observed energy-coupled Ca2+ uptake. The observations reported also indicate that electron flow through energy-conserving site 1 promotes Ca2+ release from Ehrlich cells and that extra-cellular ATP increase permeability of the cell membrane, allowing both ATP and Ca2+ to enter the cells more readily.  相似文献   

5.
Ca2+ uptake by microsomes prepared from guinea-pig stomach required the presence of both ATP and Mg2+ and was unaffected by NaN3. ATP-dependent Ca2+ uptake increased with increasing free Ca2+ concentration from 0.1 to 5 microM, and further increase in Ca2+ concentration above 5 microM did not enhance the uptake further. Half-saturation occurred at approximately 0.55 microM. The t1/2 values of Ca2+ loss from these vesicles loaded in the presence of oxalate were significantly slower than those in the absence of oxalate. Enzyme activity suggested linkage between Ca2+ uptake and ATPase activity, and most of the azide-sensitive component of ATP hydrolysis was attributable to potent inhibition of ADPase activity.  相似文献   

6.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37 degrees C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 microM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 micrograms/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

7.
ATP-dependent Ca2+ uptake was investigated at low Ca2+ concentrations (10 microM) in rat retinal synaptosomal and mitochondrial preparations obtained by differential centrifugation on Ficoll gradients. Ca2+ uptake in the synaptosomal and mitochondrial subcellular preparations was stimulated by ATP and additionally stimulated by ATP plus taurine. The ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptakes were inhibited by mitochondrial metabolic inhibitors (atractyloside, oligomycin, and ruthenium red). These metabolic inhibitors had a greater effect on the ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptake activities in the mitochondrial preparation than in the synaptosomal preparation. ATP-dependent Ca2+ uptake in a synaptosomal subfraction obtained by osmotic shock was only partially inhibited by atractyloside. ATP-dependent Ca2+ uptake in the synaptosomal subfraction was also stimulated by taurine but to a lesser extent than in either the synaptosomal or mitochondrial preparation. These studies suggest that mitochondria are primarily responsible for taurine-stimulated ATP-dependent Ca2+ uptake in synaptosomal preparations.  相似文献   

8.
Ca2+-ATPase from sarcoplasmic reticulum was reconstituted into phospholipid/cholesterol (9:1) vesicles (RO). Sucrose density gradient centrifugation of the RO vesicles separated a light layer (RL) with a high lipid/protein ratio and a heavy layer (RH). RH vesicles exhibited a high rate of Ca2+-dependent ATP hydrolysis but did not accumulate Ca2+. RL vesicles, on the other hand, showed an initial molar ratio of Ca2+ uptake to ATP hydrolysis of approximately 1.0. Internal trapping of transported Ca2+ facilitated studies over periods of several minutes. Ca2+ transport and ATP hydrolysis declined concomitantly, reaching levels near 0 with external Ca2+ concentrations less than or equal to 2 microM. Ca2+ uptake was inhibited by the Ca2+ ionophore A23187, the detergent Triton X-100, and the metabolic inhibitor quercetin. Ca2+ transport generated a transient electrical potential difference, inside positive. This finding is consistent with the hypothesis that the Ca2+ pump is electrogenic. Steady state electrical potentials across the membrane were clamped by using potassium gradients and valinomycin, and monitored with voltage-sensitive dyes. Over a range of +50 to -100 mV, there was an inverse relationship between the initial rate of Ca2+ uptake and voltage, but the rate of ATP hydrolysis was nearly constant. In contrast, lowering the external Ca2+ concentration depressed both transport and ATP hydrolysis. These findings suggest that the membrane voltage influences the coupling between Ca2+ transport and ATP hydrolysis.  相似文献   

9.
Extracellular ATP (1 mM) inhibited the growth of Friend virus-infected murine erythroleukemia cells (MEL cells) but had no effect on dimethyl sulfoxide-induced differentiation. ATP (1 mM) also caused changes in the permeability of MEL cells to ions. There was an increased influx of 45Ca2+ from a basal level of 5 pmol/min to 18 pmol/min/10(6) cells to achieve a 2-fold increase in steady-state Ca2+ as measured at isotopic equilibration. Ca2+ influx was blocked by diisothiocyanostilbene disulfonate (DIDS), an inhibitor of anion transport. ATP also stimulated Cl- uptake, and this flux was inhibited by DIDS. The ratio of ATP stimulated Cl- to Ca2+ uptake was 1.6:1. K+ and Na+ influx were also stimulated by ATP, but phosphate uptake was inhibited; the Na+ influx dissipated the Na+ gradient and thus inhibited nutrient uptake. ATP-stimulated K+ influx was ouabain inhibitable; however, the total cellular K+ decreased due to an ATP-stimulated ouabain-resistant K+ efflux. Na+ influx and Ca2+ influx occurred by separate independent routes, since Na+ influx was not inhibited by DIDS. The effects observed were specific for ATP *K1/2 MgATP = 0.7 mM) since AMP, GTP, adenosine, and the slowly hydrolyzable ATP analogue adenyl-5'-yl imidodiphosphate were without effect. The major ionic changes in the cell were a decrease in K+ and increase in Na+; cytoplasmic pH and free Ca2+ did not change appreciably. These ATP-induced changes in ion flux are considered to be responsible for growth inhibition.  相似文献   

10.
The interaction of lanthanides with isolated sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle and the effects of lanthanides on 45Ca2+ uptake by the vesicles were studied. 153Gd3+ was taken up by the vesicles in the absence of ATP and oxalate in a time-dependent manner, reaching a maximum total accumulation of 380 nmol 153Gd3+/mg protein after 20 min with 200 microM 153Gd3+. This 153Gd3+ accumulation was not washed out by 1 mM EGTA. The addition of ATP induced the release of 87% of the bound 153Gd3+, leaving behind irreversibly-accumulated 153Gd3+. Pre-incubation of the vesicles with lanthanides in the absence of ATP and oxalate inhibited 45Ca2+ uptake without affecting Ca2+-ATPase activity. The percent inhibition of 45Ca2+ uptake increased with length of pre-incubation of the vesicles with lanthanides, reaching 33% after 20 min of pre-incubation. Increasing the 45Ca2+ concentration or adding ATP or oxalate to the preincubation medium abolished these inhibitory effects on 45Ca2+ uptake.  相似文献   

11.
Inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ from the non-mitochondrial Ca2+ store site of various types of cells. To study the mechanisms of the Ca2+ release from the store site, the effect of InsP3 on the passive Ca2+ release and influx, and the active Ca2+ uptake in the presence of oxalate, was examined using saponin-treated guinea pig peritoneal macrophages. InsP3 stimulated the passive Ca2+ release and influx. Although InsP3 slightly inhibited the active Ca2+ uptake in the presence of oxalate, it seems unlikely that the Ca2+ release by this agent is caused by the inhibition of the Ca2+ uptake, because the addition of apyrase or hexokinase (which removes ATP within 30 s, so that no more Ca2+ can be accumulated) or vanadate (which inhibits the Ca2+ uptake) resulted in very slow release of Ca2+. These results suggest that the Ca2+ permeability of the Ca2+ store membrane is increased by InsP3. InsP3 did not cause an increase in the Ca2+ permeability of phospholipid vesicles (liposomes), indicating that this agent may bring about Ca2+ release by a specific effect on the physiologically relevant Ca2+ channels or carriers in the non-mitochondrial Ca2+ store site. The passive Ca2+ release by InsP3 was enhanced by ATP and an unhydrolyzable ATP analogue, 5'-adenylyimidodiphosphate, but not by ADP or AMP. The passive Ca2+ release by InsP3 was observed even at 0 degree C.  相似文献   

12.
ATP hydrolysis, either coupled or uncoupled from Ca2+ uptake by sarcoplasmic reticulum (SR), is essentially independent of Mg2+ (millimolar range) up to 50 mM. Conversely, a sharp enhancement of Ca2+ uptake by Mg2+ is observed with a consequent increase of pumping efficiency (Ca2+ per ATP). Therefore, Mg2+ modulates pumping efficiency through the molecular mechanism of the pump itself. Manganese ions also stimulate Ca2+ uptake with an apparent efficiency lower than that of Mg2+. Additionally, Mn2+ competes with Ca2+ for the pump system and is accumulated into SR vesicles. Although the affinity of the pump is about three orders of magnitude higher for Ca2+ than for Mn2+, the capacity of the vesicles for Mn2+ is about three times that commonly observed for Ca2+. It is concluded that Mg2+ (millimolar range) couples ATP hydrolysis to Ca2+ uptake and that active transport of cations (Ca2+ and Mn2+) can proceed without a compensatory countertransport of a divalent cation. Finally, it is suggested that the SR pump operates physically as general cation translocator instead of as a Ca2+-specific pump, as commonly assumed.  相似文献   

13.
On addition of ATP to vesicles derived from the sarcoplasmic reticulum (SR) of skeletal muscle, Ca2+ is accumulated from the external medium. Following uptake, spontaneous release of Ca2+ occurs in the presence or in the absence of ATP. These processes of Ca2+ uptake and release were simulated by using the models derived for ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227; Stefanova, Napier, East & Lee (1987) Biochem. J. 245, 723-730] and for Ca2+ release from passively loaded vesicles [McWhirter, Gould, East & Lee (1987) Biochem. J. 245, 713-722]. The simulations are consistent with measurements of the effects of pH, K+, Ca2+ and Mg2+ on uptake and release of Ca2+. The increase in maximal Ca2+ accumulation observed in the presence of maleate is explained in terms of complexing of Ca2+ and maleate within the SR. The calculated concentration of ADP generated by hydrolysis of ATP has a large effect on the simulations. The effects of an ATP-regenerating system on the measured Ca2+ uptake is explained in terms of both removal of ADP and precipitation of Ca3(PO4)2 within the vesicles. It is concluded that both the process of Ca2+ uptake and the process of Ca2+ release seen with SR vesicles can be interpreted quantitatively in terms solely of the properties of the Ca2+ + Mg2+-activated ATPase.  相似文献   

14.
The effects of the three hydrophobic molecules triphenylphosphine, trifluoperazine and 3-nitrophenol on Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles was investigated. When ATP was the substrate, triphenylphosphine (3 microM) increased the amount of Ca2+ accumulated by the vesicles. At high concentrations triphenylphosphine inhibited Ca2+ uptake. This effect varied depending on the ATP concentration and the type of nucleotide used. With ITP there was only inhibition and no activation of Ca2+ uptake by triphenylphosphine. On the other hand, trifluoperazine inhibited Ca2+ accumulation regardless of whether ATP or ITP was used as substrate. When 5 mM oxalate was included in the medium in order to avoid binding of Ca2+ to the low-affinity Ca2(+)-binding sites of the enzyme, both stimulation by triphenylphosphine and inhibition by trifluoperazine were reduced. In leaky vesicles at low Ca2+ concentrations, triphenylphosphine and 3-nitrophenol were competitive inhibitors of ATPase activity at the regulatory site of the enzyme (0.1-1 mM ATP). A striking difference was observed when both the high- and low-affinity Ca2(+)-binding sites were saturated. In this condition, triphenylphosphine and 3-nitrophenol promoted a 3-4-fold increase in the apparent affinity for ATP at its regulatory site.  相似文献   

15.
ATP added externally to rat synaptosomes activated uptake of both Ca2+ and glutamate which was partially accounted for by the uptake phenomena of synaptic vesicles and mitochondria, as shown by using specific inhibitors of the latter. Increasing concentrations of glutamate stimulated Ca2+ entry linearly, as shown by using 45Ca or a Ca-specific electrode. The processes of glutamate and Ca2+ uptake shared some common features and their ATP-dependence may be correlated with an ouabain-insensitive synaptosomal ectonucleotidase activity measured by a 31P-NMR or a luminometric technique. The ATP hydrolysis catalysed by the synaptosomes was activated by both Ca2+ and glutamate. The present synaptosomal activities may represent a model for studying the modulatory effects of ATP on the glutamatergic neurotransmission.  相似文献   

16.
While studying the effects of membrane phosphorylation on active Ca2+ transport in cardiac sarcoplasmic reticulum (SR) we used NaF (a conventional phosphatase inhibitor) in the Ca2+ transport assay medium to suppress protein dephosphorylation by endogenous phosphatases. Unexpectedly, depending on the experimental conditions employed, NaF was found to cause a strong inhibitory or stimulatory effect on ATP-dependent, oxalate-facilitated Ca2+ uptake (Ca2+ pump) activity of SR. Investigation of this phenomenon using canine cardiac SR revealed the following. Exposure of SR to NaF in the absence of Ca2+ or ATP in the Ca2+ transport assay medium (prior to initiating Ca2+ transport by the addition of Ca2+ or ATP) promoted a striking concentration-dependent inhibitory effect of NaF (50% and 90% inhibition with approx. 4 and 10 mM NaF, respectively) on Ca2+ uptake by SR; the magnitude of inhibition did not differ appreciably with varying oxalate concentrations. In contrast, exposure of SR to NaF in the presence of both Ca2+ and ATP resulted in a concentration-dependent stimulatory effect of NaF (half-maximal stimulation at approx. 2.5 mM NaF with 2.5 mM oxalate in assay) on Ca2+ uptake; the magnitude of stimulation decreased with increasing oxalate concentration (greater than 2-fold at 1 mM oxalate, 10% at 5 mM oxalate). The inhibitory effect prevailed when SR was exposed to NaF in the presence of Ca2+ alone (without ATP) or ATP alone (without Ca2+). Both the inhibitory and stimulatory effects of NaF were specific to fluoride ion, as NaCl (1-10 mM) showed no effect on Ca2+ uptake by SR under identical assay conditions. A persistently less active state of the Ca2+ pump (evidenced by decreased Ca2+ transport rates) resulted upon pretreatment of SR with NaF in the absence of Ca2+ or ATP; presence of Ca2+ and ATP during pretreatment prevented this transition. The inhibitory action of NaF on the Ca2+ pump was accompanied by a two-fold increase in K0.5 for Ca2+ and decrements in Hill coefficient (nH) and Ca(2+)-stimulated ATP hydrolysis, as well as steady-state level of Ca(2+)-induced phosphoenzyme. The stimulatory effect of NaF, on the other hand, was associated with an increase in the ratio of Ca2+ transported/ATP hydrolysed with only minor changes, if any, in the above parameters. These findings imply that the divergent effects of fluoride are dependent on specific conformational states of the Ca(2+)-ATPase which evolve during the catalytic and ion transport cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Uptake of 45Ca2+ by a microsomal fraction isolated pancreatic islets of non-inbred ob/ob mice was studied. ATP strongly stimulated 45Ca2+ uptake, the maximum effect being obtained with 2mM-ATP. GTP and CTP at this concentration did not increase the uptake. Scatchard analysis revealed at least two types of uptake mechanisms in the presence of 2mM-ATP; the apparent association constants were 1.1 x 10(5)m(-1) and less than 2.5 x 10(2)m(-1). In contradistinction to an unaffected low-affinity uptake, the high-affinity uptake was drastically decreased on ommission of ATP. The ATP-dependent and high-affinity uptake was half-saturated at about 10-20mum-Ca(2+) and was inhibited by 10 or 100mum cyclic AMP, 10mum cyclic GMP, 10 mum cyclic GMP, or 5mm-theophylline. 45ca2+ uptake in the absence of ATP was not affected by 100mum-cyclic AMP. In view of its sensitivity to ATP and cyclic nucleotides, the high-affinity Ca2+-uptake mechaniam may play a role in stimulus-secretion coupling in the beta-cells by regulating the cytosolic concentration of Ca2+.  相似文献   

18.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

19.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

20.
In mitochondria isolated from rat liver, incubated in the presence of 6 X 10(-3) mM hematoporphyrin and irradiated with UV light at 365 nm, respiration, oxidative phosphorylation and Ca2+ uptake were measured in order to determine the respective photosensitivity of these functions. Irradiation with increasing doses produces uncoupling of oxidative phosphorylation followed by inhibition of Ca2+ uptake and finally arrest of respiration. Ca2+ uptake stimulated by the addition of ATP was also studied in mitochondria uncoupled by irradiation which were still able to concentrate Ca2+ aerobically. Anaerobic Ca2+ uptake driven by ATP hydrolysis was found to be similar in control and in irradiated mitochondria, suggesting a different photosensitivity for the ATPase as compared to the ATP-synthase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号