首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Medulloblastoma is the most common pediatric posterior fossa malignancy, with a 5-year overall survival of only 60% and many survivors experiencing treatment-related morbidity secondary to current therapeutic regimens. With an improved understanding of the molecular basis for this disease, the opportunity to develop novel treatments with more tolerable toxicity profiles that target key molecular pathways, now exists. Recently, the hepatocyte growth factor (HGF)/MET signaling pathway has been implicated in medulloblastoma pathogenesis. Several therapeutic strategies targeting this pathway exist, including small molecule inhibitor therapy against the MET receptor tyrosine kinase. We examined the in vitro efficacy of targeting the MET receptor using the highly specific small molecule inhibitor PHA665752 as a novel treatment strategy in medulloblastoma. MET inhibition using PHA665752 was effective at reducing the proliferative capacity of the D283, ONS76, and MED8A medulloblastoma cell lines as assessed by MTS assay. Furthermore, PHA665752 treatment reduced D283 and ONS76 cell motility and impaired the growth of D283 cells in soft agar. Pretreatment of D283, ONS76, and MED8A cells with PHA665752 blocked exogenous recombinant human HGF-induced up-regulation of the downstream RAS/mitogen-activated protein kinase signaling pathway in D283, ONS76 and MED8A cell lines. Similarly, PHA665752 prevented HGF-induced phosphatidylinositol 3-kinase/AKT signaling in ONS76 and MED8A cells. These results highlight the efficacy of targeting the MET receptor tyrosine kinase therapeutically in medulloblastoma and provide support for further preclinical testing of small molecule inhibitors targeting the MET receptor in medulloblastoma.  相似文献   

2.
When multiple mitogen-activated protein kinase (MAPK) components are recruited recurrently to transduce signals of different origins, and often opposing outcomes, mechanisms to enforce signaling specificity are of utmost importance. These mechanisms are largely uncharacterized in plant MAPK signaling networks. The Arabidopsis thaliana stomatal lineage was previously used to show that when rendered constitutively active, four MAPK kinases (MKKs), MKK4/5/7/9, are capable of perturbing stomatal development and that these kinases comprise two pairs, MKK4/5 and MKK7/9, with both overlapping and divergent functions. We characterized the contributions of specific structural domains of these four “stomatal” MKKs to MAPK signaling output and specificity both in vitro and in vivo within the three discrete cell types of the stomatal lineage. These results verify the influence of functional docking (D) domains of MKKs on MAPK signal output and identify novel regulatory functions for previously uncharacterized structures within the N termini of MKK4/5. Beyond this, we present a novel function of the D-domains of MKK7/9 in regulating the subcellular localization of these kinases. These results provide tools to broadly assess the extent to which these and additional motifs within MKKs function to regulate MAPK signal output throughout the plant.  相似文献   

3.
Mitochondria act as potent buffers of intracellular Ca2+ in many cells, but a more active role in modulating the generation of Ca2+ signals is not well established. We have investigated the ability of mitochondria to modulate store-operated or “capacitative” Ca2+ entry in Jurkat leukemic T cells and human T lymphocytes using fluorescence imaging techniques. Depletion of the ER Ca2+ store with thapsigargin (TG) activates Ca2+ release-activated Ca2+ (CRAC) channels in T cells, and the ensuing influx of Ca2+ loads a TG- insensitive intracellular store that by several criteria appears to be mitochondria. Loading of this store is prevented by carbonyl cyanide m-chlorophenylhydrazone or by antimycin A1 + oligomycin, agents that are known to inhibit mitochondrial Ca2+ import by dissipating the mitochondrial membrane potential. Conversely, intracellular Na+ depletion, which inhibits Na+-dependent Ca2+ export from mitochondria, enhances store loading. In addition, we find that rhod-2 labels mitochondria in T cells, and it reports changes in Ca2+ levels that are consistent with its localization in the TG-insensitive store. Ca2+ uptake by the mitochondrial store is sensitive (threshold is <400 nM cytosolic Ca2+), rapid (detectable within 8 s), and does not readily saturate. The rate of mitochondrial Ca2+ uptake is sensitive to extracellular [Ca2+], indicating that mitochondria sense Ca2+ gradients near CRAC channels. Remarkably, mitochondrial uncouplers or Na+ depletion prevent the ability of T cells to maintain a high rate of capacitative Ca2+ entry over prolonged periods of >10 min. Under these conditions, the rate of Ca2+ influx in single cells undergoes abrupt transitions from a high influx to a low influx state. These results demonstrate that mitochondria not only buffer the Ca2+ that enters T cells via store-operated Ca2+ channels, but also play an active role in modulating the rate of capacitative Ca2+ entry.  相似文献   

4.
Peripheral neuropathy is one of the most severe and irreversible side effects caused by treatment from several chemotherapeutic drugs, including paclitaxel (Taxol®) and vincristine. Strategies are needed that inhibit this unwanted side effect without altering the chemotherapeutic action of these drugs. We previously identified two proteins in the cellular pathway that lead to Taxol-induced peripheral neuropathy, neuronal calcium sensor-1 (NCS-1) and calpain. Prolonged treatment with Taxol induces activation of calpain, degradation of NCS-1, and loss of intracellular calcium signaling. This paper has focused on understanding the molecular basis for prevention of peripheral neuropathy by testing the effects of addition of two candidate compounds to the existing chemotherapeutic drug regime: lithium and ibudilast. We found that the co-administration of either lithium or ibudilast to neuroblastoma cells that were treated with Taxol or vincristine inhibited activation of calpain and the reductions in NCS-1 levels and calcium signaling associated with these chemotherapeutic drugs. The ability of Taxol to alter microtubule formation was unchanged by the addition of either candidate compound. These results allow us to suggest that it is possible to prevent the unnecessary and irreversible damage caused by chemotherapeutic drugs while still maintaining therapeutic efficacy. Specifically, the addition of either lithium or ibudilast to existing chemotherapy treatment protocols has the potential to prevent chemotherapy-induced peripheral neuropathy.  相似文献   

5.
Inositol phosphates are water-soluble intracellular signaling molecules found in eukaryotes from yeasts to mammals, which are synthesized by a complex network of enzymes including inositol phosphate kinases. Among these, inositol polyphosphate multikinase (IPMK) is a promiscuous enzyme with broad substrate specificity, which phosphorylates multiple inositol phosphates, as well as phosphatidylinositol 4,5-bisphosphate. In addition to its catalytic actions, IPMK is known to non-catalytically control major signaling events via direct protein-protein interactions. In this review, we describe the general characteristics of IPMK, highlight its pleiotropic roles in various physiological and pathological conditions, and discuss future challenges in the field of IPMK signaling pathways.  相似文献   

6.
The inositol 1,4,5-trisphosphate (InsP3)-gated Ca channel in cerebellum is tightly regulated by Ca (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature (Lond.). 351:751–754; Finch, E.A., T.J. Turner, and S.M. Goldin. 1991. Science (Wash. DC). 252:443–446; Hannaert-Merah, Z., J.F. Coquil, L. Combettes, M. Claret, J.P. Mauger, and P. Champeil. 1994. J. Biol. Chem. 269:29642–29649; Iino, M. 1990. J. Gen. Physiol. 95:1103–1122; Marshall, I., and C. Taylor. 1994. Biochem. J. 301:591–598). In previous single channel studies, the Ca dependence of channel activity, monitored at 2 μM InsP3, was described by a bell-shaped curve (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature (Lond.). 351:751–754). We report here that, when we used lower InsP3 concentrations, the peak of the Ca-dependence curve shifted to lower Ca concentrations. Unexpectedly, when we used high InsP3 concentrations, channel activity persisted at Ca concentrations as high as 30 μM. To explore this unexpected response of the channel, we measured InsP3 binding over a broad range of InsP3 concentrations. We found the well-characterized high affinity InsP3 binding sites (with K d < 1 and 50 nM) (Maeda, N., M. Niinobe, and K. Mikoshiba. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:61–67; Mignery, G., T.C. Sudhof, K. Takei, and P. De Camilli. 1989. Nature (Lond.). 342:192–195; Ross, C.A., J. Meldolesi, T.A. Milner, T. Satoh, S. Supattapone, and S.H. Snyder. 1989. Nature (Lond.). 339:468–470) and a low affinity InsP3 binding site (K d = 10 μM). Using these InsP3 binding sites, we developed a new model that accounts for the shift in the Ca-dependence curve at low InsP3 levels and the maintained channel activity at high Ca and InsP3 levels. The observed Ca dependence of the InsP3-gated Ca channel allows the cell to abbreviate the rise of intracellular Ca in the presence of low levels of InsP3, but also provides a means of maintaining high intracellular Ca during periods of prolonged stimulation.  相似文献   

7.
Nutritional deficiency and stress can severely impair intestinal architecture, integrity and host immune defense, leading to increased susceptibility to infection and cancer. Although the intestine has an inherent capability to adapt to environmental stress, the molecular mechanisms by which the intestine senses and responds to malnutrition are not completely understood. We hereby report that intestinal cell kinase (ICK), a highly conserved serine/threonine protein kinase, is a novel component of the adaptive cell signaling responses to protein malnutrition in murine small intestine. Using an experimental mouse model, we demonstrated that intestinal ICK protein level was markedly and transiently elevated upon protein deprivation, concomitant with activation of prominent pro-proliferation and pro-survival pathways of Wnt/β-catenin, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and protein kinase B (PKB/Akt) as well as increased expression of intestinal stem cell markers. Using the human ileocecal epithelial cell line HCT-8 as an invitro model, we further demonstrated that serum starvation was able to induce up-regulation of ICK protein in intestinal epithelial cells in a reversible manner, and that serum albumin partially contributed to this effect. Knockdown of ICK expression in HCT-8 cells significantly impaired cell proliferation and down-regulated active β-catenin signal. Furthermore, reduced ICK expression in HCT-8 cells induced apoptosis through a caspase-dependent mechanism. Taken together, our findings suggest that increased ICK expression/activity in response to protein deprivation likely provides a novel protective mechanism to limit apoptosis and support compensatory mucosal growth under nutritional stress.  相似文献   

8.
The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt) localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE) approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p) and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p). The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p), Lys114 (Kgd2p) and Lys102 (Gcv3p), respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects.  相似文献   

9.
10.

Background

The non-receptor tyrosine kinase JAK2 is implicated in a group of myeloproliferative neoplasms including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. JAK2-selective inhibitors are currently being evaluated in clinical trials. Data from drug-resistant chronic myeloid leukemia patients demonstrate that treatment with a small-molecule inhibitor generates resistance via mutation or amplification of BCR-ABL. We hypothesize that treatment with small molecule inhibitors of JAK2 will similarly generate inhibitor-resistant mutants in JAK2.

Methodology

In order to identify inhibitor-resistant JAK2 mutations a priori, we utilized TEL-JAK2 to conduct an in vitro random mutagenesis screen for JAK2 alleles resistant to JAK Inhibitor-I. Isolated mutations were evaluated for their ability to sustain cellular growth, stimulate downstream signaling pathways, and phosphorylate a novel JAK2 substrate in the presence of inhibitor.

Conclusions

Mutations were found exclusively in the kinase domain of JAK2. The panel of mutations conferred resistance to high concentrations of inhibitor accompanied by sustained activation of the Stat5, Erk1/2, and Akt pathways. Using a JAK2 substrate, enhanced catalytic activity of the mutant JAK2 kinase was observed in inhibitor concentrations 200-fold higher than is inhibitory to the wild-type protein. When testing the panel of mutations in the context of the Jak2 V617F allele, we observed that a subset of mutations conferred resistance to inhibitor, validating the use of TEL-JAK2 in the initial screen. These results demonstrate that small-molecule inhibitors select for JAK2 inhibitor-resistant alleles, and the design of next-generation JAK2 inhibitors should consider the location of mutations arising in inhibitor-resistant screens.  相似文献   

11.
12.
Dopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes. To test this, we examined the capacity of two dopaminergic neurotoxicants to alter ATP-dependent Ca2+ waves and transients in primary murine striatal astrocytes: MPP+, the active metabolite of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hydroxydopamine (6-OHDA). Both compounds acutely decreased ATP-induced Ca2+ transients and waves in astrocytes and blocked OAG-induced Ca2+ influx at micromolar concentrations, suggesting the transient receptor potential channel, TRPC3, as an acute target. MPP+ inhibited 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ca2+ transients similarly to the TRPC3 antagonist, pyrazole-3, whereas 6-OHDA only partly suppressed OAG-induced transients. RNAi directed against TRPC3 inhibited the ATP-induced transient as well as entry of extracellular Ca2+, which was augmented by MPP+. Whole-cell patch clamp experiments in primary astrocytes and TRPC3-overexpressing cells demonstrated that acute application of MPP+ completely blocked OAG-induced TRPC3 currents, whereas 6-OHDA only partially inhibited OAG currents. These findings indicate that MPP+ and 6-OHDA inhibit ATP-induced Ca2+ signals in astrocytes in part by interfering with purinergic receptor mediated activation of TRPC3, suggesting a novel pathway in glia that could contribute to neurotoxic injury.  相似文献   

13.
兔阑尾中一种新的21kD的钙结合蛋白的纯化与鉴定   总被引:3,自引:0,他引:3  
纯化与鉴定了B淋巴细胞中一种新的分子量为21kD的钙结合蛋白(CaBP21)。兔阑尾淋巴细胞匀浆经热变性,Phenyl-Sepharose与DEAE-Sepharose柱层析,自每1kg细胞沉积物中获得SDS-PAGE均一的CaBP215.3mg。HCl水解后的酸性氨基酸(Asp+Glu)含量为26%。如同大多数钙结合蛋白一样,N末端封闭阻止其进行Edman降解。CaBP21中疏水性氨基酸(计Gly,不计Trp)约占46%,碱性氨基酸10%,酸性氨基酸与极性氨基酸约44%。CaBP21有较高的Ser、Tyr含量。肽谱分析等确证CaBP21为2个相同或相似亚基二聚体。以ArsenazoⅢ作Ca2+结合分析表明每分子CaBP21可结合4分子Ca2+,对Ca2+的结合常数约为10-5mol/L。各种性质表明CaBP21是一种不同于其他已知钙结合蛋白的新钙结合蛋白。  相似文献   

14.
Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs) are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5′UTR-end mediates the functional import of Green Fluorescent Protein (GFP) mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5′UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.  相似文献   

15.
16.
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.  相似文献   

17.
18.
19.
Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Chronic expression of heat shock protein gp96 on cell surfaces induces significant DC activations and systemic lupus erythematosus (SLE)-like phenotypes in mice. However, its potential as a therapeutic target against SLE remains to be evaluated. In this work, we conducted chemical approach to determine whether SLE-like phenotypes can be compromised by controlling surface translocation of gp96. From screening of chemical library, we identified a compound that binds and suppresses surface presentation of gp96 by facilitating its oligomerization and retrograde transport to endoplasmic reticulum. In vivo administration of this compound reduced maturation of DCs, populations of antigen presenting cells, and activated B and T cells. The chemical treatment also alleviated the SLE-associated symptoms such as glomerulonephritis, proteinuria, and accumulation of anti-nuclear and –DNA antibodies in the SLE model mice resulting from chronic surface exposure of gp96. These results suggest that surface translocation of gp96 can be chemically controlled and gp96 as a potential therapeutic target to treat autoimmune disease like SLE.  相似文献   

20.
Noroviruses (NoVs) are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs) as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387). Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library) for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号