首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Korol A  Frenkel Z  Cohen L  Lipkin E  Soller M 《Genetics》2007,176(4):2611-2623
Selective DNA pooling (SDP) is a cost-effective means for an initial scan for linkage between marker and quantitative trait loci (QTL) in suitable populations. The method is based on scoring marker allele frequencies in DNA pools from the tails of the population trait distribution. Various analytical approaches have been proposed for QTL detection using data on multiple families with SDP analysis. This article presents a new experimental procedure, fractioned-pool design (FPD), aimed to increase the reliability of SDP mapping results, by "fractioning" the tails of the population distribution into independent subpools. FPD is a conceptual and structural modification of SDP that allows for the first time the use of permutation tests for QTL detection rather than relying on presumed asymptotic distributions of the test statistics. For situations of family and cross mapping design we propose a spectrum of new tools for QTL mapping in FPD that were previously possible only with individual genotyping. These include: joint analysis of multiple families and multiple markers across a chromosome, even when the marker loci are only partly shared among families; detection of families segregating (heterozygous) for the QTL; estimation of confidence intervals for the QTL position; and analysis of multiple-linked QTL. These new advantages are of special importance for pooling analysis with SNP chips. Combining SNP microarray analysis with DNA pooling can dramatically reduce the cost of screening large numbers of SNPs on large samples, making chip technology readily applicable for genomewide association mapping in humans and farm animals. This extension, however, will require additional, nontrivial, development of FPD analytical tools.  相似文献   

2.
Seabird plays an important role in the marine ecosystem and is an indispensable part of the food chain. However, the seabird population has been experiencing a rapid decline due to various factors including climate change, fisheries, and invasive non-native species. To better protect seabirds, the first step is to accurately monitor them. Automatic classification of seabirds would significantly speed up the monitoring process. In this paper, we propose a dual transfer learning framework for improved seabird image classification based on spatial pyramid pooling. Specifically, a dual transfer learning framework is used to capture various patterns to improve the discriminability of the proposed model. Both InceptionV3 and DenseNet201 are used as the backbones, whose outputs are concatenated using a spatial pyramid pooling (SPP) layer. Here, SPP is used to address images of different sizes. Next, two types of pooling, global average-pooling (GAP) and global max-pooling (GMP) are applied to the output of the SPP layer, where the results of GAP and GMP are linearly added up. Our method takes both InceptionV3 and DenseNet201 as feature extractors and is trained offline in an end-to-end style. The proposed dual transfer learning framework-based seabird image classification method reached the accuracy, precision, recall, F1-score of 95.11%, 95.33%, 95.11%, 95.13% on the 10 classes seabird image dataset.  相似文献   

3.

Background

Zipf''s discovery that word frequency distributions obey a power law established parallels between biological and physical processes, and language, laying the groundwork for a complex systems perspective on human communication. More recent research has also identified scaling regularities in the dynamics underlying the successive occurrences of events, suggesting the possibility of similar findings for language as well.

Methodology/Principal Findings

By considering frequent words in USENET discussion groups and in disparate databases where the language has different levels of formality, here we show that the distributions of distances between successive occurrences of the same word display bursty deviations from a Poisson process and are well characterized by a stretched exponential (Weibull) scaling. The extent of this deviation depends strongly on semantic type – a measure of the logicality of each word – and less strongly on frequency. We develop a generative model of this behavior that fully determines the dynamics of word usage.

Conclusions/Significance

Recurrence patterns of words are well described by a stretched exponential distribution of recurrence times, an empirical scaling that cannot be anticipated from Zipf''s law. Because the use of words provides a uniquely precise and powerful lens on human thought and activity, our findings also have implications for other overt manifestations of collective human dynamics.  相似文献   

4.
5.
The assessment of landscape spatial patterns is a key issue in landscape management. Landscape pattern indices (LPIs) are tools appropriate for analyzing landscape spatial patterns. LPIs are often derived from raster land cover maps that are extracted from remotely sensed data through hard classification. However, pixel-based hard classification methods suffer from the mixed pixel problem (in which pixels contain more than one land cover class), making for inaccurate classification maps and LPIs. In addition, LPIs generated by hard classification methods are characterized by grain sizes (the sampling unit sizes) that limit the derived landscape pattern to a certain scale. Sub-pixel mapping (SPM) models can enable fine-scale estimation of the spatial patterns of land cover classes without requiring additional data; hence, this is an appropriate downscaling method for land cover mapping. The fraction images generated by soft classification estimate the area proportion of each land cover class within each pixel, and using these images as input enables SPM models to alleviate the mixed pixel problem. At the same time, by transforming fraction images into a finer-scaled hard classification map, SPM models can minimize the influence of grain size on LPIs calculation. In this research, simulated landscape thematic patterns that can provide different landscape spatial patterns, eight commonly used LPIs and a SPM model that maximizes the spatial dependence between neighbouring sub-pixels were applied to assess the efficiency of deriving LPIs from sub-pixel model maps. Results showed that the SPM model can more precisely characterize landscape patterns than hard classification methods can. Landscape fragmentation, class abundance, the uncertainty in SPM, and the spatial resolution of the remotely sensed data influenced LPIs derived from sub-pixel maps. The largest patch index, landscape division, and patch cohesion derived from remotely sensed data with different spatial resolutions through the SPM model were suitable for inter-comparison, whereas the patch density, mean patch area, edge density, landscape shape index, and area-weighted mean shape index derived from the sub-pixel maps were sensitive to the spatial resolution of the remotely sensed data.  相似文献   

6.
Task-optimized convolutional neural networks (CNNs) show striking similarities to the ventral visual stream. However, human-imperceptible image perturbations can cause a CNN to make incorrect predictions. Here we provide insight into this brittleness by investigating the representations of models that are either robust or not robust to image perturbations. Theory suggests that the robustness of a system to these perturbations could be related to the power law exponent of the eigenspectrum of its set of neural responses, where power law exponents closer to and larger than one would indicate a system that is less susceptible to input perturbations. We show that neural responses in mouse and macaque primary visual cortex (V1) obey the predictions of this theory, where their eigenspectra have power law exponents of at least one. We also find that the eigenspectra of model representations decay slowly relative to those observed in neurophysiology and that robust models have eigenspectra that decay slightly faster and have higher power law exponents than those of non-robust models. The slow decay of the eigenspectra suggests that substantial variance in the model responses is related to the encoding of fine stimulus features. We therefore investigated the spatial frequency tuning of artificial neurons and found that a large proportion of them preferred high spatial frequencies and that robust models had preferred spatial frequency distributions more aligned with the measured spatial frequency distribution of macaque V1 cells. Furthermore, robust models were quantitatively better models of V1 than non-robust models. Our results are consistent with other findings that there is a misalignment between human and machine perception. They also suggest that it may be useful to penalize slow-decaying eigenspectra or to bias models to extract features of lower spatial frequencies during task-optimization in order to improve robustness and V1 neural response predictivity.  相似文献   

7.
The perception of a letter in the context of a word is easier than in the context of a random letter sequence. It appears that our knowledge about words can influence our perception process. McClelland and Rumelhart (1981) propose an interactive activation model to account for the interaction between our knowledge about words and our visual input. They use their model to explain how these interactions facilitate perception. In their account, word context effect is a constant independent of the identity of the words. In this paper, we propose the use of informatin theory to quantify word context effect. In this way, the strength of word context effect will depend on the identity of the words. We apply the method to quantify word context effect in Chinese words. This knowledge is encoded in an artificial neural network using the interactive activation and competition model. The network is used to recognize Chinese characters and we are able to achieve a high recognition rate.  相似文献   

8.
Abstract

For high accuracy classification of DNA sequences through Convolutional Neural Networks (CNNs), it is essential to use an efficient sequence representation that can accelerate similarity comparison between DNA sequences. In addition, CNN networks can be improved by avoiding the dimensionality problem associated with multi-layer CNN features. This paper presents a new approach for classification of bacterial DNA sequences based on a custom layer. A CNN is used with Frequency Chaos Game Representation (FCGR) of DNA. The FCGR is adopted as a sequence representation method with a suitable choice of the frequency k-lengthen words occurrence in DNA sequences. The DNA sequence is mapped using FCGR that produces an image of a gene sequence. This sequence displays both local and global patterns. A pre-trained CNN is built for image classification. First, the image is converted to feature maps through convolutional layers. This is sometimes followed by a down-sampling operation that reduces the spatial size of the feature map and removes redundant spatial information using the pooling layers. The Random Projection (RP) with an activation function, which carries data with a decent variety with some randomness, is suggested instead of the pooling layers. The feature reduction is achieved while keeping the high accuracy for classifying bacteria into taxonomic levels. The simulation results show that the proposed CNN based on RP has a trade-off between accuracy score and processing time.  相似文献   

9.
The effects of spatial selective attention upon ERPs associated with the processing of word stimuli were investigated. While subjects maintained central eye fixation, ERPs were recorded to words presented to the left and right visual fields. In each of 6 runs, subjects focussed attention to alternate fields to perform a category-detection task. Pairs of semantically related and repeated words were embedded in the word lists presented to the attended and unattended visual fields. Consistent with prior studies, the P1-N1 visual ERP was larger when elicited by words in attended spatial locations. A large negative slow wave identified as N400 was elicited by attended, but not unattended, words. For attended words, N400 was smaller for semantically primed or repeated words. We concluded that spatial selective attention can modulate the degree to which words are processed, and that the cognitive processes associated with N400 are not automatic.  相似文献   

10.
Words are built from smaller meaning bearing parts, called morphemes. As one word can contain multiple morphemes, one morpheme can be present in different words. The number of distinct words a morpheme can be found in is its family size. Here we used Birth-Death-Innovation Models (BDIMs) to analyze the distribution of morpheme family sizes in English and German vocabulary over the last 200 years. Rather than just fitting to a probability distribution, these mechanistic models allow for the direct interpretation of identified parameters. Despite the complexity of language change, we indeed found that a specific variant of this pure stochastic model, the second order linear balanced BDIM, significantly fitted the observed distributions. In this model, birth and death rates are increased for smaller morpheme families. This finding indicates an influence of morpheme family sizes on vocabulary changes. This could be an effect of word formation, perception or both. On a more general level, we give an example on how mechanistic models can enable the identification of statistical trends in language change usually hidden by cultural influences.  相似文献   

11.
12.
Engbert R  Nuthmann A 《PloS one》2008,3(2):e1534
During reading, we generate saccadic eye movements to move words into the center of the visual field for word processing. However, due to systematic and random errors in the oculomotor system, distributions of within-word landing positions are rather broad and show overlapping tails, which suggests that a fraction of fixations is mislocated and falls on words to the left or right of the selected target word. Here we propose a new procedure for the self-consistent estimation of the likelihood of mislocated fixations in normal reading. Our approach is based on iterative computation of the proportions of several types of oculomotor errors, the underlying probabilities for word-targeting, and corrected distributions of landing positions. We found that the average fraction of mislocated fixations ranges from about 10% to more than 30% depending on word length. These results show that fixation probabilities are strongly affected by oculomotor errors.  相似文献   

13.
Large‐domain species distribution models (SDMs) fail to identify microrefugia, as they are based on climate estimates that are either too coarse or that ignore relevant topographic climate‐forcing factors. Climate station data are considered inadequate to produce such estimates, a viewpoint we challenge here. Using climate stations and topographic data, we developed three sets of large‐domain (450 000 km²), fine‐grain (50 m) temperature grids accounting for different levels of topographic complexity. Using these fine‐grain grids and the Worldclim data, we fitted SDMs for 78 alpine species over Sweden, and assessed over‐ versus underestimations of local extinction and area of microrefugia by comparing modelled distributions at species' rear edges. Accounting for well‐known topographic climate‐forcing factors improved our ability to model fine‐scale climate, despite using only climate station data. This approach captured the effect of cool air pooling, distance to sea, and relative humidity on local‐scale temperature, but the effect of solar radiation could not be accurately accounted for. Predicted extinction rate decreased with increasing spatial resolution of the climate models and with increasing number of topographic climate‐forcing factors accounted for. About half of the microrefugia detected in the most topographically complete models were not detected in the coarser SDMs and in the models calibrated from climate variables extracted from elevation only. Although major limitations remain, climate station data can potentially be used to produce fine‐grain topoclimate grids, opening up the opportunity to model local‐scale ecological processes over large domains. Accounting for the topographic complexity encountered within landscapes permits the detection of microrefugia that would otherwise remain undetected. Topographic heterogeneity is likely to have a massive impact on species persistence, and should be included in studies on the effects of climate change.  相似文献   

14.
We propose a new model-based approach linking word learning to the age of acquisition (AoA) of words; a new computational tool for understanding the relationships among word learning processes, psychological attributes, and word AoAs as measures of vocabulary growth. The computational model developed describes the distinct statistical relationships between three theoretical factors underpinning word learning and AoA distributions. Simply put, this model formulates how different learning processes, characterized by change in learning rate over time and/or by the number of exposures required to acquire a word, likely result in different AoA distributions depending on word type. We tested the model in three respects. The first analysis showed that the proposed model accounts for empirical AoA distributions better than a standard alternative. The second analysis demonstrated that the estimated learning parameters well predicted the psychological attributes, such as frequency and imageability, of words. The third analysis illustrated that the developmental trend predicted by our estimated learning parameters was consistent with relevant findings in the developmental literature on word learning in children. We further discuss the theoretical implications of our model-based approach.  相似文献   

15.
The purpose of this study was to explore the effects of spatial and temporal properties on the expected responses of visual neurons that have linear receptive fields (RFs), particularly those having a mirror symmetric distribution of spatial subregions. Receptive fields that are symmetric in at least one spatial dimension occur in neurons of the retina, the lateral geniculate nucleus (LGN), and the visual cortex of mammals. Responses to flashing bars, moving bars, and moving edges were studied for different configurations of an analog RF model in which spatial and temporal aspects were varied independently. Responses of the model at intermediate stimulus speeds were found to agree with responses in the literature for X and Y units of the LGN and often for simple units of the visual cortex. In particular, having separated regions of response to light and dark edges, an identifying property of simple cells, was found to be a linear consequence of RF regions responding inversely to stimuli of opposite polarity. Model differences from responses of cortical complex units show that a linear model cannot mimic their responses, and imply that complex units employ major nonlinearities in coding image polarity (light vs dark), which signifies a nonlinearity in coding intensity. Because sudden flux changes inherent in flashing bars test mainly temporal RF properties, and slowly moving edges test mainly spatial properties, these two tests form a useful minimal set with which to describe and classify RFs. The usefulness of this set derives both from its sensitivity to spatial and temporal variables, and from the correlation between the linearity of a cell's processing of stimulus intensity and its RF classification.  相似文献   

16.
Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects--space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts.  相似文献   

17.
Within a wide class of multichannel models of the visual system it is suggested that spatial distributions of luminance are processed by the independent activation of grating detectors, or spatial frequency channels. Probability summation is often described in terms of Quick's nonlinear pooling model [Quick RF (1974) Kybernetik 16:65–67]. Using this model, we find evidence for the existence of different kinds of nonlinear summation at threshold; for compound gratings with well-separated spatial frequency components, the threshold functions indicate nonlinear summation which is not compatible with probability summation, while for line patterns well separated in the spatial domain the probability summation rule proves compatible with the data. Received: 24 June 1998 / Accepted in revised form: 16 March 1999  相似文献   

18.
《IRBM》2022,43(2):120-129
The main focus of the paper is to propose an artificial immune systems-based classification model for code-mixed social media data. The artificial immune systems are computational models inspired by the biological immune system. In this paper, artificial immune systems are used to optimize the initial parameters of Long short-term memory (LSTM) model. The proposed artificial immune systems-based LSTM model is then used for the classification of code-mixed data. The classification of Hindi-English code-mixed data into Hindi, English, and ambiguous words is done. Popular word embedding features were used for the representation of each word. The word embedding features and character embedding features have been used. The proposed method helps in identifying the word context by extracting the intent of user for using the ambiguous word in code-mixed sentence. Extensive experiments reveal that the artificial immune systems-based classification model outperforms competitive models especially when there are some ambiguous words in the social media data.  相似文献   

19.
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.  相似文献   

20.
Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues’ semantics is required for conceptual cueing to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号