首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

2.
Ants are among the most important elements in many ecosystems and known as famous ecosystem engineers. By changing physical and chemical properties of soil, ants may provide suitable habitats for other species. Based on previous observations, we hypothesized that Persian goitered gazelles (Gazella subgutturosa subgutturosa) exhibit a preference for utilizing sites close to seed harvester ant (Messor spp.) nests. We tested our hypothesis by (1) mapping the occurrence of harvester ant nests and aggregated gazelle pellet groups along 31 strip transects, (2) monitoring pellet group accumulation bimonthly at 56 pairs of permanent plots established on ant nests and at adjacent control sites for a complete year, and (3) comparing vegetation and soil parameters between ant nest sites used by gazelles and paired control plots without ant nests. Although the area of Messor spp. nest sites covered only about 0.29% of the sampled transects, 84% of the gazelle pellet group aggregation sites were positioned upon ant nests, suggesting that gazelles actively selected Messor spp. nest sites. Pair-wise comparisons between ant nest plots and paired control plots also confirmed higher use of ant nest sites by gazelles compared to sites without ant nests in all time periods. Percent soil organic matter, percent cover of gravel, and annual herb vegetation significantly differed between ant nest and paired control plots in all the vegetation communities. We suggest that the alterations brought about by harvester ants on soil and vegetation make these sites attractive to gazelles. Gazelle territoriality behaviour and use of ant nests as bedding sites may be the reasons for selection of ant nest sites by gazelles.  相似文献   

3.
Variability in ant eating has been observed in several populations of eastern and western gorillas. We investigated the occurrence of ant (Dorylus sp.) eating in two groups of mountain gorillas (Gorilla beringei beringei) with overlapping home ranges within Bwindi Impenetrable National Park, Uganda from September 2001 to August 2002. We calculated the frequency of ant eating by an indirect method of analyzing fecal samples from silverbacks, adult females, and juveniles. One group consumed ants significantly more often than the other (3.3 vs 17.6% of days sampled). Furthermore, the group that consumed ants more often also consumed them on a seasonal basis (September–February monthly range: 0–8%; March–August monthly range: 30–42.9%). Finally, females and juveniles of this group consumed ants significantly more often than did the silverback (total samples containing ants: silverback, 2.1%; adult female, 13.2%; juvenile, 11.2%). Differences in ant eating between groups are likely due to variability in use of habitats where ants occur (particularly secondary forests). Surveys of ant densities in differing habitats, nutritional analysis of ants, and quantification of the amount of ants in their diets are necessary to understand if ant consumption is due to availability, nutritional value, group traditions, or taste preference.  相似文献   

4.
Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems.  相似文献   

5.
Predicting the outcomes of any mutualistic interaction between ants and plants can be a very difficult task, since these outcomes are often determined by the ecological context in which the interacting species are embedded. Network theory has been an important tool to improve our understanding about the organizational patterns of animal–plant interactions. Nevertheless, traditionally, network studies have focused mainly on species-based differences and ignoring the importance of individual differences within populations. In this study, we evaluated if downscaling an ant–plant network from species to the individual level results in structural and functional changes in a network involving different-sized plant individuals. For this, we studied the extrafloral-nectar producing-tree Caryocar brasiliense (Caryocaraceae) and their associated ants in a Neotropical savanna. We observed 254 interactions involving 43 individuals of C. brasiliense and 47 ant species. The individual-based ant–plant network exhibited a nested pattern of interactions, with all developmental stages contributing equally to structuring this non-random pattern. We also found that plants with greater centrality within the network were better protected by their ant partners. However, plants with higher levels of individual specialization were not necessarily better protected by ants. Overall, we presented empirical evidence that intra-population variations are important for shaping ant–plant networks, since they can change the level of protection against herbivores conferred by the ants. These results highlight the importance of individual-based analyses of ecological networks, opening new research venues in the eco-evolutionary dynamics of ant–plant interactions.  相似文献   

6.
7.
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites'' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.  相似文献   

8.
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.  相似文献   

9.
Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms.  相似文献   

10.
We used a maze to explore the ability of Cataglyphis cursor to store multiple visual patterns presented in a fixed sequence. Ants were trained individually to negotiate a linear maze that consisted of four boxes connected by tunnels and through which an ant travelled from a sucrose feeder back to its nest. Each box had one entrance and two possible exits. One exit led to a blocked tunnel and the other to an open tunnel leading to the entrance of the next box. The open and closed exits in each box were labelled by different solid, black shapes that were specific to each box. Ants learnt to negotiate the maze using the shapes for guidance rather than a fixed motor strategy. Trained ants could not only discriminate positive from negative shapes, but had also learnt which positive shape belonged to which box. For example, when the positive shape appropriate to box 1 (1+) was pitted against that appropriate to box 3 (3+), ants preferred 1+ to 3+ in box 1, but chose 3+ over 1+ in box 3. We conclude that ants can identify individual positive shapes and expect to encounter them in the correct order independently of extra-maze cues.  相似文献   

11.
Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the alternative. How do they do this? We used radio-frequency identification-tagged ants to monitor individual behaviour. Here we show for the first time that switching between nests during the decision process can influence nest choice without requiring direct comparison of nests. Ants finding the poor nest were likely to switch and find the good nest, whereas ants finding the good nest were more likely to stay committed to that nest. When ants switched quickly between the two nests, colonies chose the good nest. Switching by ants that had the opportunity to compare nests had little effect on nest choice. We suggest a new mechanism of collective nest choice: individuals respond to nest quality by the decision either to commit or to seek alternatives. Previously proposed mechanisms, recruitment latency and nest comparison, can be explained as side effects of this simple rule. Colony-level comparison and choice can emerge, without direct comparison by individuals.  相似文献   

12.
The direct and indirect interactions of invasive ants with plants, insect herbivores, and Hemiptera are complex. While ant and Hemiptera interactions with native plants have been well studied, the effects of invasive ant–scale insect mutualisms on the reproductive output of invasive weeds have not. The study system consisted of Argentine ants (Linepithema humile), boneseed (Chrysanthemoides monilifera monilifera), and sap-sucking scale insects (Hemiptera: Saissetia oleae and Parasaissetia nigra), all of which are invasive in New Zealand. We examined the direct and indirect effects of Argentine ants on scale insects and other invertebrates (especially herbivores) and on plant reproductive output. Argentine ants spent one-third of their time specifically associated with scale insects in tending behaviours. The invertebrate community was significantly different between uninfested and infested plants, with fewer predators and herbivores on ant-infested plants. Herbivore damage was significantly reduced on plants with Argentine ants, but sooty mould colonisation was greater where ants were present. Herbivore damage increased when ants were excluded from plants. Boneseed plants infested with Argentine ants produced significantly more fruits than plants without ants. The increase in reproductive output in the presence of ants may be due to increased pollination as the result of pollinators being forced to relocate frequently to avoid attack by ants, resulting in an increase in pollen transfer and higher fruit/seed set. The consequences of Argentine ant invasion can be varied; not only does their invasion have consequences for maintaining biodiversity, ant invasion may also affect weed and pest management strategies.  相似文献   

13.
Behavioral mechanisms regulating the competitive relations between the red wood ant Formica aquilonia and the ground beetles Carabus regalis, Pterostichus melanarius, P. magus, P. oblongopunctatus, Harpalus smaragdinus, and Amara nitida were studied by artificially initiated collisions between living insects as well as with the use of imitation models. Members of different functional groups within an ant family (aphid-milkers, hunters, and guards) behaved differently towards beetles. Active ants were shown to respond selectively to different features of the possible competitors, such as coloration, the presence of “appendages” (legs, antennae), body symmetry, rate of movement, and scent. Field and laboratory experiments demonstrated the ability of beetles to avoid collisions with active ants. The scent of anthill material attracted ground beetles, which consumed dead ants. The gained individual experience may allow the beetles to use supplementary forage resources in the territories controlled by ants. The flexible tactical patterns facilitate spatial segregation of ground beetles and ants in the same territory and result in a more complete utilization of food resources.  相似文献   

14.
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.  相似文献   

15.
To control population of Monochamus beetles that transmit pine wood nematode, Bursaphelenchus xylophilus, a variety of insecticides have been applied to forest ecosystems in Korea. Non-target predatory insects can be directly or indirectly exposed to insecticides. We evaluated potential lethal and sublethal effects of thiacloprid on survival and behavior of carpenter ants, Camponotus japonicus Mayr. Field-collected ants were directly exposed to several food items such as thiacloprid-exposed Monochamus beetles, 10% sugar water with thiacloprid concentrations, and 10% sugar water at group and individual levels. In experiment for groups of individuals, dead beetle bodies generally had possible adverse effects on ants through dietary exposure, because two forager ants were dead or paralysis after they were exposed to thiacloprid-exposed Monochamus beetles. At individual level, dietary exposure to thiacloprid at concentrations of 10 and 50?mg/L was lethal to ants, causing paralysis and impaired walking. Mortality of ant workers was higher in direct or indirect exposure treatments than that in the control. Some ants exposed to thiacloprid showed abnormal behavior within a few days, especially at thiacloprid concentrations of 10 and 50?mg/L. However, some of them sometimes recovered from the abnormal behavior in a day. In consequence, application of thiacloprid in pine forests may disrupt species interaction and foraging behavior of ants, but the effect of thiacloprid through trophallaxis behavior should be further assessed using more extensive colonies composed of queen, workers, brood, and so on.  相似文献   

16.
We studied the ant-feeding behavior of Asiatic black bears (Ursus thibetanus) through direct observation in the Ashio area of Japan. We recorded the bears’ “time foraging per ant nest” (TPN), documented the seasonal occurrence of ants in their scats, estimated phenological changes in caste composition of the nests of two abundant ant species (Lasius flavus and L. hayashi), and calculated the nutritional composition of queens, males, workers, queen pupae, and non-queen pupae of both species. We addressed two main hypotheses: (1) ant-nest phenology, especially the availability of pupae, affects bears’ myrmecophagy level; and (2) TPN changes according to the caste composition of ant nests. Bears in the Ashio area consumed more ants than in previous studies elsewhere in Japan, with consumption peaking in early July. The availability of pupae may trigger ant feeding by bears. And, because queen pupae were heavier than members of other castes, calories per individual were higher. TPN varied during the study period (late June–early August). There was a negative relationship between frequency of occurrence of pupae in ant nests and TPN; because pupae cannot move by themselves, bears could consume them effectively and quickly. Thus, bears may change their ant-foraging behavior (especially TPN) based on ant nest composition.  相似文献   

17.
Post-dispersal seed predation is a risk for plants in semiarid environments, leading to strategies to protect their propagules from seed collection by animals. In this study, we evaluated the importance of mucilage secretion in seeds as a mechanism to reduce seed collection by ants. We selected three Mediterranean species with strong mucilage secretion on their seeds which become sticky upon wetting. Seeds of Rosmarinus officinalis, Fumana ericoides, and Fumana thymifolia were exposed to ants and survival was compared between dry loose seeds and seeds glued to the soil with previously secreted mucilage. The study site was in the Sierra Calderona, 25?km north of Valencia (Spain). The ant?Cplant interaction was analyzed by scrutinizing seed collection by ants and by analyzing the waste piles of ant nests. To test survival, groups of 10 seeds were placed on the ground. Each group consisted of five control (dry) and five?mucilaginous seeds (previously mucilage secreted) and was covered by the cover of a Petri dish modified to permit only the entry of ants. Seeds were inspected weekly for seed disappearance and the survival function (Kaplan?CMeier estimator) was calculated. Seeds of the target species were important food items for ants and were actively collected, and more than 50?% of the experimental seeds that were glued to the ground with their own mucilage survived at the end of the study period but only 0?C20?% of the control seeds survived after the same time of exposure. The implications for plant establishment of these findings are discussed.  相似文献   

18.
19.
Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.  相似文献   

20.
Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants’ capability in discerning plants’ chemical compounds (innate attraction) or by ants’ learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant’s learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号