首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study, we characterized the mRNA abundance of prostaglandin E(2) receptor subtypes (EP1 and EP3, which stimulate excitatory responses; EP2 and EP4, which stimulate inhibitory responses) and the FP receptor in pregnant sheep myometrium and endometrium in relation to parturition. Myometrial and endometrial poly(A) RNA was extracted from control ewes at 143-147 days gestational age (dGA, n = 6) and from ewes in spontaneous term labor at 145-147 dGA (n = 6), and was subjected to Northern blot analysis for FP, EP1, EP2, EP3, and EP4 mRNA. Myometrial EP3, EP4, and FP mRNA abundance increased during labor (P<0.05); EP2 mRNA did not change. EP1 mRNA was not detectable in the myometrium. Endometrial EP2 and EP4 mRNA remained unchanged during labor. EP3 mRNA was expressed at a very low level, and EP1 and FP mRNA were not detected in endometrium in any animals studied. In conclusion, there is differential expression in myometrium and endometrium of EP subtypes and FP receptor in relation to labor. Increases in EP3 and FP, together with increased prostaglandin production from intrauterine tissues, may lead to the switch in the myometrial contraction pattern that occurs during labor. These differences within and between myometrium and endometrium may result from different anatomical location, such as longitudinal or circular layers of myometrium, or vascular location.  相似文献   

3.
Prostanoids, especially prostaglandin (PG) E(2), are important mediators of uterine relaxation and contractions during gestation and parturition. Inhibitors of PG formation as well as PG analogues are used to modulate uterine tonus. So far, only limited data are available regarding the expression of prostanoid receptors in human pregnant myometrium. In the present study, the expression of the receptors for PGE(2) (EP1, EP2, EP3, EP4), PGF(2alpha) (FP), prostacyclin (IP), and thromboxane A(2) (TP) in human pregnant myometrium was studied by RT-PCR, in situ hybridization and immunohistochemistry. Myometrial tissue was obtained from five women at term and not in labour and from two women who delivered preterm. Tissue specimens were excised from the upper edge of the transverse lower uterine segment incision. In all tissues analysed, EP1, EP2, EP3, EP4, FP, TP and IP receptor mRNA and protein was detected. mRNA expression for PGD(2) (DP) receptor was not detected in the majority of tissue specimens. EP1, EP2, EP4, IP, TP and FP receptor protein was detected on myometrial smooth muscle cells, whereas EP3 receptor protein was only expressed by stromal and endothelial cells. In situ hybridization experiments yielded similar results. The expression of the EP2 receptor mRNA was inversely related to gestational age. We suggest that the contractile effect of PGE(2) at term is probably mediated directly by the EP1 receptor expressed in myometrial smooth muscle cells and indirectly by the EP3 receptor expressed in stromal cells and a decrease in EP2 receptor expression.  相似文献   

4.
5.
The cyclooxygenase-prostanoid pathway regulates myometrial contractility through activation of prostanoid receptors on uterine smooth muscles. However, the possible expression of prostanoid receptors on autonomic nerves cannot be excluded completely. The aim of the present study was to clarify the presence of neural prostanoid receptors on adrenergic nerves in the porcine uterine longitudinal muscle. In [(3)H]-noradrenaline-loaded longitudinal muscle strips of porcine uterus, electrical field stimulation (EFS) evoked [(3)H]-noradrenaline release in a stimulation frequency-dependent manner. The EFS-evoked release was completely abolished in Ca(2+)-free (EGTA, 1mM) incubation medium and by tetrodotoxin or omega-conotoxin GVIA, suggesting that [(3)H]-noradrenaline was released from neural components. The EFS-evoked [(3)H]-noradrenaline release was significantly enhanced by treatment with indomethacin. In the presence of indomethacin, PGE(2) and PGF(2alpha), but not PGD(2), inhibited the EFS-evoked [(3)H]-noradrenaline release. Of synthetic prostanoid receptor agonists examined, both U46619 (TP) and sulprostone (EP(1)/EP(3)) decreased the EFS-evoked [(3)H]-noradrenaline release in a concentration-dependent manner, while fluprostenol (FP), BW245C (DP) and butaprost (EP(2)) were almost ineffective. SQ29548 (TP receptor antagonist) blocked the effect of U46619, but SC19220 (EP(1) receptor antagonist) did not change the inhibition by sulprostone or PGE(2). Double immunofluorescence staining using protein gene product 9.5, tyrosine hydroxylase, EP(3) receptor and TP receptor antibodies suggested the localization of EP(3) or TP receptors on adrenergic nerves in the porcine uterus. These results indicated that neural EP(3) and TP receptors are present on adrenergic nerves of the porcine uterine longitudinal muscle. Endogenous prostanoid produced by cyclooxygenase can regulate noradrenaline release in an inhibitory manner through activation of these neural prostanoid receptors.  相似文献   

6.
To clarify the uterine region-dependent distribution of prostanoid receptors, we compared the mechanical responses to selective prostanoid receptor agonists (FP, EP3, DP, EP2) and naturally occurring prostaglandins (PGF2alpha PGE2, PGD2) in longitudinal and circular muscles isolated from three different regions (cornu, corpus and cervix) of the non-pregnant porcine uterus. Expression levels of FP receptor and cyclooxygenase (COX-1 and COX-2) in the respective regions were also examined using RT-PCR and Western blotting. The contractile responses to fluprostenol (an FP agonist) and PGF2alpha in both longitudinal and circular muscles were strongest in the cornu but weak in the corpus and cervix. Expression levels of mRNA and protein of FP receptor were highest in the cornu, consistent with the contractile responses. ONO-AE-248 (an EP3 agonist) caused contraction of both muscle layers, but region-related difference in responsiveness was observed only in the longitudinal muscle. ONO-AE1-259 (an EP2 agonist) inhibited spontaneous contraction of the myometrium, and inhibition was conspicuously stronger in the cervix. PGE2 caused contraction (<100 nM, cornu > corpus = cervix) and inhibition (>300 nM, cornu = corpus < or = cervix) of contractility depending on the concentration in both muscle layers. BW245C (a DP agonist) inhibited the spontaneous contraction, and region-dependent different responsiveness was marked in the longitudinal muscle (cervix = corpus > cornu). COX-1 but not COX-2 was detected in the non-pregnant porcine uterus. Expression level of COX-1 was different in the longitudinal muscle (cornu > corpus = cervix) but the same in the circular muscle. SC-560 inhibited the spontaneous contraction of longitudinal muscles in all regions. The results of the present study indicate that there are region-related heterogeneous distributions of contractile (FP and EP3, cornu > cervix) and relaxant (EP2 and DP, cervix > cornu) prostanoid receptors and COX-1 in the porcine uterus. The results also suggest involvement of endogenous PGs in the regulation of spontaneous uterine contractility. Region-related differences in COX-1 and prostanoid receptors might be necessary to produce a gradient of uterine motility decreasing from the cornu to the cervix that manages movement of luminal contents.  相似文献   

7.
8.
Prostaglandins (PGs) play a pivotal role in the initiation and progression of term and preterm labor. Uterine activity is stimulated primarily by PGE(2) and PGF(2alpha) acting on prostaglandin E (EP) and prostaglandin F (FP) receptors, respectively. Activation of FP receptors strongly stimulates the myometrium, whereas stimulation of EP receptors may lead to contraction or relaxation, depending on the EP subtype (EP1-4) expression. Thus, the relative expression of FP and EP1-4 may determine the responsiveness to PGE(2) and PGF(2alpha). The aims of this study were to characterize the expression of EP1-4 and FP in intrauterine tissues and placentome, together with myometrial responsiveness to PG, following the onset of dexamethasone-induced preterm and spontaneous term labor. Receptor mRNA expression was measured using quantitative real-time polymerase chain reaction using species-specific primers. There was no increase in myometrial contractile receptor expression at labor onset, nor was there a change in sensitivity to PGE(2) and PGF(2alpha). This suggests expression of these receptors reaches maximal levels by late gestation in sheep. Placental tissue showed a marked increase in EP2 and EP3 receptor expression, the functions of which are unknown at this time. Consistent with previous reports, these results suggest that PG synthesis is the main factor in the regulation of uterine contractility at labor. This is the first study to simultaneously report PG E and F receptor expression in the key gestational tissues of the sheep using species-specific primers at induced-preterm and spontaneous labor onset.  相似文献   

9.
Stable cell lines that individually express the eight known human prostanoid receptors (EP(1), EP(2), EP(3), EP(4), DP, FP, IP and TP) have been established using human embryonic kidney (HEK) 293(EBNA) cells. These recombinant cell lines have been employed in radioligand binding assays to determine the equilibrium inhibitor constants of known prostanoid receptor ligands at these eight receptors. This has allowed, for the first time, an assessment of the affinity and selectivity of several novel compounds at the individual human prostanoid receptors. This information should facilitate interpretation of pharmacological studies that employ these ligands as tools to study human tissues and cell lines and should, therefore, result in a greater understanding of prostanoid receptor biology.  相似文献   

10.
During parturition, uterine-derived prostaglandins (PG) play an outstanding role regarding the functional elimination of the corpus luteum and the promotion of uterine contraction. The rate-limiting enzyme cyclooxygenase-2 (COX-2), highly regulated in a cell-type and localization specific manner throughout pregnancy, is involved in uterine prostanoid production. Prostaglandins exert their effects via G-protein-coupled receptors. Distribution and cellular localization of these receptors are decisive factors for prostaglandin-mediated actions. Since both COX-2 and PG receptors have only been assessed during pregnancy in the cow, these parameters were localized immunohistochemically near term to evaluate their specific role at parturition. Thus, during two periods, segments of the intercaruncular uterine wall were collected from cows at slaughter being eight and nine months pregnant, from cattle during caesarean section, and after spontaneous calving.

Results reveal that COX-2 was mainly localized in the cytoplasm of surface epithelial cells with a high expression in animals with induced parturition. The enzyme could also be found in lower concentrations within the glandular epithelium without any effect of gestational time or labour. In contrast to relaxant prostaglandin E receptor type 2 (EP2), not showing any change in all tissue layers observed, contractile prostaglandin F2 receptor (FP) was modulated during the peripartal period revealing a peak expression in animals with induced parturition. FP was localized in surface and glandular epithelial cells as well as in endometrial stroma and myometrial smooth muscle cells.

Our study indicates that labour and induction of parturition may have an effect on amounts of immunohistochemically detectable COX-2 and FP. EP2 remains rather unchanged during the peripartal period. COX-2 and FP thus contribute via changes in amount and distribution to mechanisms associated with parturition.  相似文献   


11.
A polyclonal antibody was raised against amino acids 7-18 in the first extracellular loop of rat prostaglandin F (FP) receptor to monitor expression and localization in pregnant rat myometrium at Gestational Days 16, 18, 20, 21, 21.5, 22 (delivery), and 23 (1-day postpartum; n = 5 per group). The antibody recognized a protein of approximately 43 kDa on Western blot analysis in both membrane (soluble and nonsoluble) and cytosolic fractions of myometrium on each day of gestation. Expression of FP protein increased significantly (P < 0.05) during late gestation in both soluble membrane and cytosolic fractions, being significantly greater at Day 21.5 than at Day 20 of gestation in the soluble membrane fraction and in the cytosolic fraction of tissues collected during labor compared with those obtained before labor. The total concentration of FP receptor in the membrane (soluble plus nonsoluble) remained high throughout late gestation and fell significantly (P < 0.05) in the postpartum period. The FP receptor in the soluble membrane fraction (compared to the total membrane FP receptor) was significantly (P < 0.05) higher in late gestation than earlier, whereas the ratio of FP protein in cytosolic to that in the total membrane was significantly (P < 0.05) higher on Day 23 than earlier in gestation, suggesting a dynamic movement of FP with advancing gestational age. Immunoreactive FP receptor localized to circular and longitudinal smooth muscle at all gestational ages, but changes in intracellular localization were observed in late gestation with a staining pattern similar to alpha-actin, suggesting an association with myofibrils. Our study suggests an increase in FP-receptor protein in myometrium with advancing gestation and a marked elevation at term. This supports a role for uterine FP receptors in mediation of uterine contractility at term.  相似文献   

12.
Prostanoids comprising prostaglandins (PGs) and thromboxanes (TXs) have been shown to play physiological and pathological roles in zebrafish. However, the molecular basis of zebrafish prostanoid receptors has not been established. Here, we demonstrate that there exist at least five ‘contractile’ (Ca2+-mobilizing) and one ‘inhibitory’ (Gi-coupled) prostanoid receptors in zebrafish; five ‘contractile’ receptors consisting of two PGE2 receptors (EP1a and EP1b), two PGF receptors (FP1 and FP2), and one TXA2 receptor TP, and one ‘inhibitory’ receptor, the PGE2 receptor EP3. [3H]PGE2 specifically bound to the membranes of cells expressing zebrafish EP1a, EP1b and EP3 with a Kd of 4.8, 1.8 and 13.6 nM, respectively, and [3H]PGF specifically bound to the membranes of cells expressing zebrafish FP1 and FP2, with a Kd of 6.5 and 1.6 nM, respectively. U-46619, a stable agonist for human and mouse TP receptors, significantly increased the specific binding of [35S]GTPγS to membranes expressing the zebrafish TP receptor. Upon agonist stimulation, all six receptors showed an increase in intracellular Ca2+ levels, although the increase was very weak in EP1b, and pertussis toxin abolished only the EP3-mediated response. Zebrafish EP3 receptor also suppressed forskolin-induced cAMP formation in a pertussis toxin-sensitive manner. In association with the low structural conservation with mammalian receptors, most agonists and antagonists specific for mammalian EP1, EP3 and TP failed to work on each corresponding zebrafish receptor. This work provides further insights into the diverse prostanoid actions mediated by their receptors in zebrafish.  相似文献   

13.
Prostaglandin E(2) (PGE(2)) exerts diverse biological effects through four G-protein-coupled cell surface receptor subtypes, EP1-4. This study's objective was to characterize EP1-4 receptor mRNA expression within pregnant guinea pig myometrium during early implantation stage (gestation day [GD] 6) and late stage gestation (GD 50) and evaluate in vitro contractile activity of receptor subtype selective agonists. Using RT-PCR, qualitative gene expression patterns of EP2, EP3, and EP4 mRNA were detected in the myometrium and remained unchanged between the gestational ages. EP1 mRNA remained undetected in pregnant tissue. In vitro contractile activity was evaluated in GD 6 and GD 50 myometrium using vehicle and EP agonists PGE(2), 17-phenyl trinor PGE(2), sulprostone, misoprostol, and CP-533,536. All spasmogens in pregnant myometrium were EP1/EP3 selective agonists, though likely acting via EP3 receptors in this test model. CP-533,536--a highly selective EP2 receptor agonist--and the vehicle failed to induce myometrial contraction at both gestational ages.  相似文献   

14.
Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate).  相似文献   

15.
16.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

17.
Chronic ingestion of non-steroidal anti-inflammatory medication is reported to delay or, in part, reverse development of polyps in the colon, but the mechanism for this effect is unknown. Using mRNA and immunoglobulin probes, specific for prostanoid receptors and for prostaglandin endoperoxide synthase (COX 1 and 2), we sought to define, by in situ and in vitro techniques, changes in PGE2 receptors and synthesis in cell populations of precancerous familial adenomatous polyposis (FAP) colonic mucosa. In FAP, expression of prostanoid receptors EP3 and EP4 among colonic lamina propria mononuclear and lateral crypt epithelial cells was robust, with 53.9+/-5.3% of mononuclear cells staining EP4+. When sections of normal colonic mucosa were examined by similar techniques, prostanoid receptor EP4 was expressed on only 21.3+/-1.2% of lamina propria mononuclear cells (including CD4+ T lymphocytes), as well as on surface and lateral crypt epithelium, and this distribution was found at the mRNA level as well. When receptor expression was quantitated by densitometry, immunoreactive EP3 protein on deep basolateral (but not other) FAP crypt epithelium was enhanced 2.8-fold over normal, and the number of prostanoid receptor EP4+ mononuclear cells by 2.5-fold. On the other hand, while COX 1 expression in mononuclear cells was prominent in normal and FAP mucosa, densitometric analysis showed immunoreactive prostaglandin endoperoxide synthase levels were further increased in FAP, due to a greater than fourfold elevation of COX 2 expression among mononuclear cells and epithelia. Our data suggest enhanced cell-specific prostanoid receptor expression and increased prostanoid synthesis in precancerous FAP mucosa.  相似文献   

18.
Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E(2) and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia co-cultures. This was probably mediated via microglia as it did not affect TNF-alpha-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.  相似文献   

19.
To clarify the molecular basis for the prostaglandin (PG) mediated effects in adipose cells at various stages of their development, expression of mRNAs encoding receptors specific for prostaglandin E2, F2alpha and I2 (i.e. EP, FP, and IP receptors) was investigated in differentiating clonal Ob1771 pre-adipocytes, as well as in mouse primary adipose precursor cells and mature adipocytes. We have further characterized the differential expression of mRNAs encoding three subtypes of the EP receptor, i.e. EP1, EP3, and EP4, and examined the expression of mRNAs encoding the three isoforms (alpha, beta, and gamma) of the EP3 receptor. Altogether the results show that the expression of IP, FP, EP1, and EP4 receptor mRNAs was considerably more pronounced in pre-adipose cells than in adipose cells, mRNAs encoding the alpha, beta, and gamma isoforms of the EP3 receptor were all exclusively expressed in freshly isolated mature adipocytes. These data may indicate that PGI2, PGF2alpha, and PGE2 may interact directly with specific receptors in pre-adipose cells, whose transduction mechanisms are known to affect maturation related changes. In mature adipocytes, however, the equipment of mRNAs encoding the EP3 receptor isoforms is in agreement with the well known effect of PGE2 on adenylate cyclase and lipolysis in mature adipocytes.  相似文献   

20.
Inflammatory mediators, including prostaglandins, cytokines, and chemokines, are strongly implicated in the mechanism of human labor, though their precise roles remain unknown. Here we demonstrate that interleukin 1 beta (IL-1beta) significantly increased the expression and release of interleukin-8 (CXCL8), monocyte chemotactic protein-1 (CCL2), and granulocyte macrophage colony-stimulating factor (CSF2) by primary human myometrial cells. However, this effect was repressed by prostaglandin E(2) (PGE(2)). As PGE(2) can activate four distinct PGE(2) receptors (EP(1), EP(2), EP(3), and EP(4)) to elicit various responses, we sought to define the EP receptor(s) responsible for this repression. Using selective EP receptor agonists and a selective EP(4) antagonist, we show that PGE(2) mediates the repression of IL-1beta-induced release of CXCL8, CCL2, and CSF2 via activation of the EP(2) and EP(4) receptors. The use of siRNA gene-specific knockdown further confirmed a role for both receptors. Real-time RT-PCR demonstrated that EP(2) was the most highly expressed of all four EP receptors at the mRNA level in human myometrial cells, and immunocytochemistry showed that EP(2) protein is abundantly present throughout the cells. Interestingly, PGE(2) does not appear to reduce mRNA expression of CXCL8, CCL2, and CSF2. Our results demonstrate that PGE(2) can elicit anti-inflammatory responses via activation of the EP(2) and EP(4) receptors in lower segment term pregnant human myometrial cells. Further elucidation of the EP receptor-mediated signaling pathways in the pregnant human uterus may be beneficial for optimizing the maintenance of pregnancy, induction of labor or indeed treatment of preterm labor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号