首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid asymmetry in renal brush-border membranes   总被引:1,自引:0,他引:1  
The topological distribution of phospholipids between the inside and the outside of rabbit kidney brush-border membranes has been investigated by incubating membrane vesicles with sphingomyelinase, phospholipases A2 from bee venom and hog pancreas, phospholipases C and D, and trinitrobenzene sulfonate. Orientation and integrity of vesicles upon phospholipase treatment was determined by using two monoclonal antibodies recognizing an extracytoplasmic and a cytoplasmic domain, respectively, of the neutral endopeptidase (EC 3.4.24.11). It is shown that the transbilayer distribution of phospholipids is highly asymmetrical in kidney brush-border membranes: sphingomyelin accounted for 75% of the phospholipids present in the external leaflet, whereas phosphatidylethanolamine and phosphatidylserine plus phosphatidylinositol were found to comprise the majority of the inner layer of the membrane.  相似文献   

2.
A summation fraction of the membranes of Actinomyces sp. 26-115 was obtained as a result of lysis of its protoplasts in a hypotonic medium. The qualitative content of protein, lipids, phospholipids, nucleic acids, glucosamine and muramic acid was determined in the membranes at various stages of the organism development. Phosphatidylcholine is the main component of phospholipids in this organism. Intracellular actinomycin was found inside the protoplasts. Electrophoregrams of the microprotoplasts and membranes are presented. Actinomycin was also detected in the membranes. Still, it is not clear whether it is a component of the membrane or it is adsorbed on the membrane during the process of its isolation. The final conclusion on the relationship between the membrane and localization of actinomycin in the cell requires further investigation.  相似文献   

3.
While V/S plots of phospholipase A1 show a phase transition, kinetic behaviour of phospholipase A2 acting in the same concentration range is hyperbolic. However after phospholipase A2 has been solubilized from the plasma membranes by 1 M NaCl, the V/S curve shows a phase transition. Membrane-bound phospholipase A1 shows a narrow optimum pH at 8.5 -9, while phospholipase A2 activity presents only small variations between pH 7 and 9.5. Towards exogenous phospholipids at the optimum pH 8.5 of phospholipase A1, the specific activity of the latter is 3-fold higher than phospholipase A2 specific activity. On the contrary towards endogenous phospholipids, phospolipase A2 activity is higher than phospholipase A2 activity. Moreover labeled endogenous PE hydrolysis by phospholipase A2 is decreased by addition of non labeled exogenous PE into the incubation medium. All these data suggest that the active site of phospholipase A1 is turned to the outside and acts only on exogenous substrates: for phospholipase A2 it would be inside, and exogenous phospholipids could be hydrolyzed only after penetrating the membrane.  相似文献   

4.
B Bloj  D B Zilversmit 《Biochemistry》1976,15(6):1277-1283
Purified phospholipid exchange protein from beef heart cytosol is used to accelerate the exchange of phospholipids between labeled sealed ghosts and phosphatidylcholine/cholesterol liposomes. The purified protein accelerates the transfer of phosphatidylcholine and, to a lesser degree, that of sphingomyelin, phosphatidylinositol, and lysophosphatidylcholine. The presence of exchange protein does not accelerate the exchange of phospholipids between intact red blood cells and liposomes, but 75% of the phosphatidylcholine of sealed ghosts is readily available for exchange. The remaining 25% is also exchangeable but at a slower rate. When the exchange is assayed between inside-out vesicles and liposomes, 37% of the phosphatidylcholine is readily available, and 63% is exchanged at a slower rate. These results are consistent with an asymmetric distribution of phosphatidylcholine in isolated erythrocyte membrane fractions. The sum of the forward and backward transposition of phosphatidylcholine between the inside and outside layers of sealed ghost membranes amounts to 11% per hour, and the half-time for equilibration is 2.3 h. Significatnly lower values are obtained for the inside-out vesicles (half-time for equilibration: 5.3 h). These results suggest that, during the formation of the vesicles, the asymmetry of phosphatidylcholine is partially preserved, but structural changes occur in the membrane that affect the rate of membrane transposition of phosphatidylcholine.  相似文献   

5.
Phospholipase A2 (Naja naja), the nonpenetrating dye trinitrobenzene sulfonate, and the penetrating dye dinitrofluorobenzene, were used to determine the transmembrane distributions of phospholipids of mitochondria and glyoxysomes isolated from endosperm tissue of castor bean (Ricinus communis L. var. Hale). These studies indicated that the phospholipid distributions were distinctly asymmetric in the accessible (reacted with the probes without total membrane disruption by detergents) pools of the glyoxysomal and inner mitochondrial membranes, but more nearly symmetric in the outer mitochondrial membrane. However, significant quantities of the phospholipids of the mitochondrial membranes were inaccessible to the probes used. An increased accessibility of the phospholipids of all membranes following Triton X-100 dispersion was found, and protein to phospholipid ratios in organelle membranes were found to correlate inversely with the accessibility of the phospholipids to the probes. The inaccessible phospholipids may be involved in lipid-protein interactions.  相似文献   

6.
Microsomal Membrane Changes during the Ripening of Apple Fruit   总被引:7,自引:1,他引:6       下载免费PDF全文
The changes in leakage and viscosity of microsomal membranes from apples (Malus sylvestris cv Calville de San Sauveur) at different stages of ripening were examined. These changes were correlated with those in the lipid composition of the membranes, sterols, phospholipids, and fatty acids of the phospholipids. The greatest changes in membrane properties occurred as the fruit reached its climacteric and this corresponded with a change in the sterol:phospholipid ratio in the membranes. Changes were also found in fatty acid unsaturation level, but primarily in the postclimacteric stage of ripening.  相似文献   

7.
Circular dichroism (CD) of alamethicin embedded in vesicular membranes from outside, and its change, upon imposing Donnan potentials across the membrane, was measured. The changes in CD suggested a decrease in a helicity and increase in beta structure with the membrane potential positive inside and vice versa when the potential was positive on the outer side of the vesicles from where the alamethicin was inserted into the membrane. The Donnan potential was created by entrapping the polyacrylate (PA-) in the vesicles and changing the salt concentration outside or by adding different concentrations of PA- or polyethyleneimide (PEI+) at the outside of vesicles with 2 x 10(-5) M salt inside. The effect of the potential on the CD spectra and thus the alamethicin conformation is independent on the type of the polyelectrolyte employed for the Donnan potential generation.  相似文献   

8.
The effect of the local anesthetic dibucaine on the solid to liquid-crystalline phase transition in phospholipid vesicles was studied by calorimetry and fluorescence polarization. The partition coefficient (greater than 3000) of dibucaine in the membranes of vesicles prepared from acidic phospholipids was more than 20 times higher than in neutral phospholipid membranes under the same conditions. Calorimetric measurements on vesicles prepared form acidic phospholipids (bovine brain phosphatidylserine; dipalmitoylphosphatidylglycerol) showed that dibucaine (1 with 10(-4) M) produced a significant reduction in the gel-liquid crystalline transition temperature (Tc). This fluidizing effect of dibucaine on acidic phospholipid membranes was even more marked in the presence of Ca2+. In contrast, dibucaine at the same concentration did not alter the Tc of neutral phospholipids (dipalmitoylphosphatidylcholine). Significant increase in the fluidity of neutral phospholipid membranes occurred only at higher dibucaine concentrations (2 with 10(-3) M). Measurements of the fluorescence polarization and lifetime of the probe, 1,6-diphenylhexatriene, in acidic phospholipid vesicles revealed that dibucaine (1 with 10(-4) M) caused an increase in the probe rotation rate indicating an increase in the fluidity of the phospholipid membranes. A good correlation was obtained between fluorescence polarization data on dibucaine-induced changes in membrane fluidity and calorimetric measurements on vesicles of the same type.  相似文献   

9.
Vesicles composed of phospholipids with different fatty acyl side chains have been utilized to examine the importance of the nonpolar membrane region for the prothrombin-converting activity of procoagulant phospholipid vesicles. Membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with unsaturated fatty acyl side chains were more active in prothrombin activation than membranes composed of phospholipids with saturated fatty acyl chains. This phenomenon was observed above the phase transition temperature, i.e., on membranes in the liquid-crystalline state. The prothrombin-converting activity of saturated phospholipids approached the activity of unsaturated phospholipids at high factor Va concentrations, which is indicative for a less favorable equilibrium constant for prothrombinase assembly on membrane surfaces composed of saturated phospholipids. The difference between saturated and unsaturated phospholipids was annulled on membranes with high mole percentages of PS. This may result from a compensating contribution of electrostatic forces to the binding equilibria involved in prothrombinase assembly. Additional effects on the prothrombin-converting activity were observed when membranes containing saturated phospholipids were studied below their phase transition temperature. In agreement with Higgins et al. [(1985) J. Biol. Chem. 260, 3604-3612], we found that the time required for the assembly of prothrombinase from membrane-bound factors Xa and Va is considerably prolonged on solid membranes. However, we also observed an effect of membrane fluidity on the steady-state rate of prothrombin activation. Kinetic experiments at saturating factor Va concentrations showed that the transition from the liquid-crystalline to the gel state caused a more than 9-fold decrease of the kcat of prothrombin activation without affecting the Km for prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Location of electron transport chain components in chloroplast membranes of chlamydomonas reinhardi, y-1 was investigated by use of proteolytic digestion with soluble or insolubilized trypsin. Digestion of intact membrane vesicles with soluble trypsin inactivates the water-splitting system, the 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition site of Photosystem II, the electron transport between the two photosystems as well as the ferredoxin NADP reductase. Reduction of NADP with artificial electron donors for Photosystem I could be restored, however, by addition of purified reductase to trypsin-digested membranes. Electron transfer activities of Photosystems I and II reaction centers were resistant to trypsin digestion either from outside or from within the thylakoids when active trypsin was trapped inside the membrane vesicles by sonication and digestion carried out in the presence of trypsin inhibitor added from outside. In the latter case, the water-splitting system was also found to be resistant to digestion. Polyacrylamide-bound insolubilized trypsin inactivated only the ferredoxin NADP reductase. Photosynthetically active membranes obtained at different stages of development showed a basically similar behavior toward trypsin.  相似文献   

11.
The membrane content in phospholipids along the secretory pathway in rat pancreatic B-cells was studied in situ by high-resolution cytochemistry, applying the recently introduced phospholipase A2-gold technique. The gold particles were mostly associated with cell membranes, and the various types of membranes were labeled to a different extent. Quantitation of the labeling over these membranes revealed a heterogeneous distribution of the labeling across the secretory pathway. This heretogeneity occurred mainly as a progressive, decreasing gradient in the first half of this pathway, between the rough endoplasmic reticulum and the mi-cisternae of the Golgi apparatus. The labeling density remained at a lower level in the trans-most Golgi cisternae and immature secretory granule membranes, to increase in the mature secretory granule membrane, where it reached the value found in the plasma membrane. These results provide evidence that the functional heterogeneity existing across the membrane forming the secretory pathway is parallelled by substantial changes in their phospholipid content.  相似文献   

12.
Alterations of phospholipid fatty acid composition in the renewing intestine were studied in the infant piglet. Newborn piglets were fed from birth to 2 weeks of age a concentrated cow's milk which defined a standard supply of dietary fatty acids. Phospholipids were isolated from the whole mucosa, isolated intestinal cells and purified brush border membranes. Intestinal cells were isolated according to their position along the crypt-villus axis and cell phospholipids were extracted at each step of differentiation. Changes in fatty acid composition of cell phospholipids were related to those of lactase activity in the corresponding cell homogenates. In cell phospholipids, the relative content of linoleic and linoleic acids increased about 2-fold from crypt base to villus tip. Substantial contents of alkenylacyl glycerophospholipids (plasmalogens) were found in crypt cell phospholipids and in purified brush border membrane phosphatidylethanolamine (11 and 14% of alkenyl groups by weight of total fatty acids, respectively). The proportion of alkenylacyl glycerophospholipids decreased as cells ascended the villus column and became more differentiated. The results show that fatty acid compositional changes in differentiating cell phospholipids occurred in the immature intestine (before weaning) and suggest that these alterations might be related to the appearance of specific functions.  相似文献   

13.
To detect and characterize membrane domains that have been proposed to exist in bacteria, two kinds of pyrene-labelled phospholipids, 2-pyrene-decanoyl-phosphatidylethanolamine (PY-PE) and 2-pyrene-decanoyl-phosphatidylglycerol (PY-PG) were inserted into Escherichia coli or Bacillus subtilis membrane. The excimerization rate coefficient, calculated from the excimer-to-monomer ratio dependencies on the probe concentration, was two times higher for PY-PE than for PY-PG at 37 degrees C. This was ascribed to different local concentrations rather than to differences in mobility. The extent of mixing between the two fluorescent phospholipids, estimated by formation of their heteroexcimer, was found very low both in E. coli and B. subtilis, in contrast to model membranes. In addition, these two pyrene derivatives exhibited different temperature phase transitions and different detergent extractability, indicating that the surroundings of these phospholipids in bacterial membrane differ in organization and order. Inhibition of protein synthesis, leading to condensation of nucleoid and presumably to dissipation of membrane domains, indeed resulted in increased formation of heteroexcimers, broadening of phase transitions and equal detergent extractability of both probes. It is proposed that in bacterial membranes these phospholipids are segregated into distinct domains that differ in composition, proteo-lipid interaction and degree of order; the proteo-lipid domain being enriched by PE.  相似文献   

14.
1. 1H-NMR and 31P-NMR are used to measure the outside/inside distribution of phospholipids in mixed vesicles. 2. Ferricyanide is a suitable shift reagent for measuring the outside/inside ratio of lecithin using 1H-NMR even when the phospholipid mixture contains negative lipids. 3. 31P-NMR can be used to measure the distribution of all phospholipids present provided the resonances are separated. 4. At 36.4 MHz the inside and outside phosphorus in lecithin vesicles have different chemical shifts. The separation at room temperature is 4-5 Hz and the individual linewidths are about 4Hz. 5. In a mixture of lecithin with phosphatidylethanolamine the latter has preference for the inside layer of the bilayer. The same holds for mixtures of lecithin with phosphatidylserine, phosphatidylinositol and phosphatidic acid. 6. In mixtures of lecithin and phosphatidylserine the preference of the latter for the inside is increased at lower pH under which conditions the negative charge of the phosphatidylserine is decreased. 7. In mixtures of lecithin with sphingomyelin the lecithin has a higher concentration at the inside. 8. The effect of vesicle size on the 31P-NMR linewidth and the temperature dependence of this linewidth is in agreement with the conclusion of Berden et al. (FEBS Lett. (1974), 46, 55-58) that the chemical shift anisotropy, modulated by the isotropic tumbling of the vesicles, makes a contribution to the linewidth. The chemical shift difference between outside and inside phosphorus can be used as a parameter for the measurement of the packing density at the inside and of the size of the vesicles. 9. It is concluded that both charge and the packing properties of the head group are major factors in determining the distribution of phospholipids in mixed vesicles.  相似文献   

15.
To investigate the mechanism by which 5-n-alkyl(C19-C25)-resorcinols synthesized by certain bacteria of the Azotobacter genus affect the lipid bilayers of cellular membranes, planar bimolecular membranes were formed from these alkyl-resorcinols and from mixtures of those and typical bacterial phospholipids such as phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The electrical properties and, in some instances, the stability of the prepared membranes have been studied. The alkylresorcinols have been found to associate with phospholipids to form oligomeric and polymeric complexes, thereby giving rise to modifications in the bilayer structure and properties. It has been shown that the same compounds suppress the mitochondrial respiration in the presence of NAD-dependent substrates, but they activate it if succinate is used as substrate. This fact is explained in terms of the interaction between the alkylresorcinols and membrane phospholipids.  相似文献   

16.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

17.
Plasma membranes, isolated from Ehrlich ascites tumor cells, were dissolved in 2% cholate, 4 M urea and then reformed into liposomes upon dialysis at 4 degrees with exogenous phospholipids. Reconstituted vesicles regain the ability to transport amino acids. Na+ was shown to accelerate the uptake of alpha-aminoisobutyrate, phenylalanine, and methionine, but not leucine or epsilon-aminohexanoic acid. With the reconstituted vesicles, methionine, but not leucine, inhibited the uptake of alpha-aminoisobutyrate. An apparent Km value for alpha-aminoisobutyrate uptake of 3.0 mM was obtained. This value is close to that observed with the intact cells and the native membrane vesicles. A Na+ gradient (high Na+ outside) increased alpha-aminoisobutyrate uptake, whereas a reversed gradient (high Na+ inside) increased alpha-aminoisobutyrate efflux. The latter flux was increased by valinomycin, suggesting electrogenic transport. A modest extent of coupling between a Na+ gradient and uphill flow of alpha-aminoisobutyrate was observed.  相似文献   

18.
Mono- and dimethylated derivatives constitute important intermediates in the conversion of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in eucaryote membranes. 1H-NMR techniques were utilized to examine the conformation of the region of the fatty acyl chains that is close to the polar group in the series of alpha-phospholipids: PE, N-methyl-PE, N,N-dimethyl-PE, and PC. The same series of polar groups, but on phospholipid containing sn-1 and/or sn-3 fatty acyl chains (beta-phospholipids) were also examined. All of the phospholipids were in the form of small sonicated vesicles which are widely utilized as membrane models. The alpha-methylene group of the sn-1 and sn-2 fatty acyl chains of the alpha-phospholipids give rise to separate signals due to the non-equivalency of these chains with respect to the glycerol phosphate backbone on all alpha-phospholipids tested. Additionally, differences in the environment of the PC molecules as well as N-methyl-PE, and N,N-dimethyl-PE, but not PE itself on the inside and outside of the vesicles are reflected in the chemical shift of the alpha-methylene protons. On the other hand, all of the beta-phospholipids (including beta-PE) were found to reflect the inside/outside packing differences in their alpha-methylene groups. The bilayer packing does not induce any nonequivalence in the chemically equivalent acyl chains. In mixed micelles with detergents, beta-phospholipids showed one alpha-CH2 signal for all phospholipids. These results are consistent with a common conformational arrangement for the fatty acyl chains in all alpha-phospholipids that have been investigated no matter what aggregated form. The conformational arrangement in the beta-phospholipids is different, but again is similar for all of the compounds tested in various aggregated forms.  相似文献   

19.
A new peptide antibiotic, EM 49, is shown to disrupt the structure of Escherichia coli outer membranes and release outer membrane fragments into the surrounding media. Evidence supporting this conclusion indludes EM 49 stimulated release of outer membrane phospholipids, lipopolysaccharide, and membrane fragments having a phospholipid and polypeptide composition similar to outer membranes. The density of the membrane fragments released by EM 49 was 1.22 g/cm3, which was identical to isolated outer membranes. Approximately 10 to 15% of the E. coli lipopolysaccharide was released upon treatment with EM 49. Both scanning and transmission electron microscopy revealed that the antibiotic caused the formation of numerous protrusions or blebs on the surface of E. coli with apparent release of membrane vesicles from the cells. Direct interaction between EM 49 and outer membranes was demonstrated using outer membranes labeled with the fluorescent dye diphenylhexatriene. Treatment of the fluorescent-labeled outer membranes with EM 49 increased fluorescence intensity and decreased polarization, indicating that the peptide perturbed outer-membrane structure. In addition, strong interactions between EM 49 and purified E. coli phospholipids were detected using the Hummel and Dreyer technique. Association constants between the peptide and phospholipids were approximately 10(5) M-1. A model for the disruptive effect of EM 49 on outer-membrane structure is proposed in which the fatty acid chain of the antibiotic is inserted into the hydrophobic core of the membrane. This orientation would allow the polycationic, peptide portion of the antibiotic to disrupt the antibiotic to disrupt the normal electrostatic interactions between divalent cations and components of the outer membrane. Evidence supporting this conclusion includes specific protection of E. coli from EM 49 by Mg2+ and Ca2+ and inhibition of EM 49 stimulated phospholipid release by these cations. Disruption of the antibiotic to penetrate to the inner membrane, which is probably the primary killing site of EM 49.  相似文献   

20.
The lipid composition of purified erythrocyte membrane glycophorin was measured. Diphosphoinositide, triphosphoinositide, and phosphatidylserine are the major phospholipids in glycophorin preparation. Nearly all of the radioactive diphosphoinositide and triphosphoinositide extracted from erythrocyte membranes by lithium d?odosalicylate are recoverd in purified glycophorin. There appeared to be no significant enrichment of other acidic membrane phospholipids in the protein. The results do not permit a firm conclusion as to whether the polyphosphoinositides are associated specifically with the membrane protein or whether fortuitous binding has occurred during purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号