首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetaldehyde inhibited the oxidation of fatty acids by rat liver mitochondria as assayed by oxygen consumption and CO2 production. ADP-stimulated oxygen uptake was more sensitive to inhibition by acetaldehyde than was uncoupler-stimulated oxygen uptake, suggesting an effect of acetaldehyde on the electron transport-phosphorylation system. This conclusion is supported by the decrease in the respiratory control ratio, associated with fatty acid oxidation. Acetaldehyde depressed ketone body production as well as the content of acetyl CoA during palmitoyl-1-carnitine oxidation. Acetaldehyde was considerably more inhibitory toward fatty acid oxidation than was acetate. Therefore, the inhibition by acetaldehyde is not mediated by acetate, the direct product of acetaldehyde oxidation by the mitochondria. Oxygen uptake was depressed by acetaldehyde to a slightly, but consistently, greater extent in the absence of fluorocitrate, than in its presence. This suggests inhibition of oxygen consumption from β-oxidation to acetyl CoA and that which arises from citric acid cycle activity. The inhibition of fatty acid oxidation is not due to any effect on the activation or translocation of fatty acids into the mitochondria.The depression of the end products of fatty acid oxidation (CO2, ketones, acetyl CoA) as well as the greater sensitivity of palmitate oxidation compared to acetate oxidation, suggests inhibition by acetaldehyde of β-oxidation, citric acid cycle activity, and the respiratory-phosphorylation chain. Neither the activities of palmitoyl CoA synthetase nor carnitine palmitoyltransferase appear to be rate limiting for fatty acid oxidation.  相似文献   

2.
3.
4.
Effect of chronic ethanol ingestion on pancreatic protein synthesis   总被引:1,自引:0,他引:1  
The effect of chronic ethanol feeding on pancreatic protein synthesis was assessed by studying the rate of incorporation of [3H]leucine into proteins in isolated rat pancreatic acini in vitro. Chronic ethanol feeding increased the rate of protein synthesis (2-3-fold) compared to controls fed an isocaloric diet. The onset of the increase in protein synthesis was detectable 2 days after the beginning of ethanol feeding, reached a maximum after 7 days and remained constant for up to 4 months. The increased incorporation of [3H]leucine was not due to an increased turnover of proteins as measured in pulse-chase experiments. After separation of individual digestive enzymes by SDS-polyacrylamide gel electrophoresis and determination of the distribution of radioactivity in different proteins, a general increase in the rate of incorporation of the label into all of the proteins was observed. In contrast to the observations made with isolated acini, there was no significant difference between the control and ethanol-fed groups when the rate of pancreatic protein synthesis was measured in vivo. However, overnight withdrawal of ethanol led to an increase of approx. 70% in protein synthesis in the ethanol-fed group. These results suggest that chronic ethanol ingestion modifies the control of pancreatic protein synthesis; the enhanced protein synthesis is expressed in isolated acini, i.e., in the absence of physiological factors present during chronic ethanol ingestion and in vivo after ethanol withdrawal.  相似文献   

5.
6.
7.
An attempt has been made to determine the location of the site at which the metabolism of ethanol interacts with that of choline to produce an increase in the oxidation of choline. The first enzyme in the oxidation pathway for choline, choline dehydrogenase, was assayed using a newly developed spectrophotometric assay and freshly isolated intact rat liver mitochondria. No changes were observed in either 'apparent' V or the 'apparent' Km values of choline dehydrogenase for choline after ethanol ingestion. However, when the choline oxidase system was assayed, a 28% decrease in 'apparent' Km for choline and a 53% increase in 'apparent' V was observed. The effects of ATP on choline oxidase were studied further, and a 29.4% decrease was observed in mitochondrial ATP levels from freshly isolated mitochondria from the ethanol-treated rats. In vitro aging of mitochondria further decreased the level of ATP, and the rate of decrease was considerably faster during the first hour in the mitochondria from the ethanol-treated animals. The decreases in ATP from both control and experimental mitochondria were accompanied by increases in choline oxidase activity. The initial decrease in ATP was correlated with an increase in mitochondrial ATPase activity which may be related to an increase in mitochondria Mg2+. Because chronic ethanol ingestion has resulted in decreased oxidation rates of succinate and beta-hydroxybutyrate while at the same time increasing the oxidation rates of choline, the studies reported here suggest that the effect of chronic ethanol ingestion is primarily on a step that is unique to choline and which probably exists prior to the electron transport chain.  相似文献   

8.
The influence of chronic ethanol ingestion on hepatic acyl-CoA: cholesterol acyltransferase activity was investigated to determine the relationship between alcohol intake and cholesterol ester accumulation. Rats were given nutritionally complete liquid diets supplemented with 6.3% ethanol or an isocaloric equivalent of dextrin-maltose for 5 weeks. During this period, the hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed male rats remained constant, whereas the same activity in pair-fed controls as well as chow-fed rats exhibited a 30% decrease in activity. Unlike alcohol-fed male rats, the hepatic acyl-CoA: cholesterol acyltransferase activity of female rats decreased by approximately 30% by the fifth week of ethanol ingestion. Despite the fact that the gender of the animals led to disparate levels of acyl-CoA: cholesterol acyltransferase activity in response to ethanol ingestion, similar levels of cholesteryl ester accumulation were observed. The altered levels of acyl-CoA: cholesterol acyltransferase activity caused no significant change in the cholesterol concentration, cholesterol/phospholipid ratio, phospholipid fatty acid composition, or the membrane fluidity of the hepatic microsomes. We conclude that the altered hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed female rats cannot be directly responsible for ethanol-induced accumulation of cholesteryl esters.  相似文献   

9.
The acute effect of the hypolipidemic agent bezafibrate on fatty acid oxidation was studied in rat hepatocytes and mitochondria. Bezafibrate caused a concentration-related inhibition of oleate oxidation in liver cells. In mitochondria bezafibrate inhibited the oxidation of palmitoyl CoA but had no effect on palmitoylcarnitine oxidation, suggesting the site of inhibition was the formation of the carnitine derivative. Bezafibrate and bezafibroyl CoA inhibited the overt carnitine palmitoyltransferase (I) in rat liver mitochondria with comparable potency but with distinct kinetics. The inhibition caused by bezafibrate was not prevented by omission of Mg++-ATP from the assay mixture, indicating activation of bezafibrate to bezafibroyl CoA was not required for inhibition. The data demonstrate that bezafibrate, like several other peroxisome proliferating agents, inhibits mitochondrial fatty acid oxidation in rat liver. The inhibition may be relevant to the mechanism of peroxisome proliferation.  相似文献   

10.
1. Hepatic lipogenesis in vivo and the activities of enzymes associated with fatty acid synthesis in the liver were studied in rats fed for 21 days on liquid diets containing ethanol. 2. The ethanol-fed rats developed a moderate hepatic triacylglycerol accumulation during this period. When carbohydrate was replaced by ethanol in the diet, the rate of fatty acid synthesis was slower in the ethanol-fed rats on low-, medium- and high-fat diets than in the appropriate controls. However, when the fat/carbohydrate ratio was kept the same in the ethanol-fed and control rats, ethanol had no influence on the rate of fatty acid synthesis. 3. Glucose 6-phosphate dehydrogenase activity was lower in the ethanol-fed group. ;Malic' enzyme activity did not change during the ethanol treatment when the fat/carbohydrate ratio was kept unchanged. 4. The ATP citrate lyase activity was lower in the ethanol-fed rats on all diets, whereas acetyl-CoA synthetase activity was independent of the composition of the control diet, but was lower in the ethanol-fed rats, in which the concentration of the active form of pyruvate dehydrogenase was also lower. 5. It is concluded that hepatic fatty acid synthesis does not play any major role in ethanol-induced triacylglycerol accumulation. Careful design of the diets is necessary to reveal the specific effects of ethanol on the enzymes associated with lipogenesis.  相似文献   

11.
12.
H Kono  M Fujii  T Sokabe  J Kaneshige 《Enzyme》1979,24(3):142-151
To study the effects of ethanol on liver chronically injured by CCl4, activities of hepatic enzymes related to ethanol oxidation, influences of ethanol on hepatic metabolites, and blood ethanol disappearance were observed. (1) Activities of alcohol dehydrogenase, low- and high-Km aldehyde dehydrogenase, microsomal ethanol-oxidizing system and drug-metabolizing enzyme were remarkably decreased in the injured liver. (2) Increases in lactate/pyruvate and beta-hydroxybutyrate/acetacetate ratios were shown in control liver 2 h after ethanol ingestion. Similar but less pronounced effects of ethanol on the 'redox state' were also seen in rats with chronic liver injury. (3) Delay in ethanol disappearance was not observed until 12 h after ethanol ingestion. The ethanol-induced changes in the redox state in the injured liver were similar to those in controls. Higher ethanol concentrations in blood from rats with chronic liver injury could be related to potentiate the injured liver.  相似文献   

13.
14.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

15.
Mitochondrial were prepared from fat-cells isolated from rat epididymal adipose tissues of fed and 48 h-starved rats to study some aspects of fatty acid oxidation in this tissue. The data were compared with values obtained in parallel experiments with liver mitochondria that were prepared and incubated under identical conditions. 2. In the presence of malonate, fluorocitrate and arsenite, malate, but not pyruvate-bicarbonate, facilitated palmitoyl-group oxidation in both types of mitochondria. In the presence of malate, fat-cell mitochondria exhibited slightly higher rates of palmitoylcarnitine oxidation than liver. Rates of octanoylcarnitine oxidation were similar in liver and fat-cell mitochondria. Uncoupling stimulated acylcarnitine oxidation in liver, but not in fat-cell mitochondria. Oxidation of palmitoyl- and octanoyl-carnitine was partially additive in fat-cell but not in liver mitochondria. Starvation for 48 h significantly decreased both palmitoylcarnitine oxidation and latent carnitine palmitoyltransferase activity in fat-cell mitochondria. Starvation increased latent carnitine palmitoyltransferase activity in liver mitochondria but did not alter palmitoylcarnitine oxidation. These results suggested that palmitoylcarnitine oxidation in fat-cell but not in liver mitochondria may be limited by carnitine palmitoyltransferase 2 activity. 3. Fat-cell mitochondria also differed from liver mitochondria in exhibiting considerably lower rates of carnitine-dependent oxidation of palmitoyl-CoA or palmitate, suggesting that carnitine palmitoyltransferase 1 activity may severely rate-limit palmitoyl-CoA oxidation in adipose tissue.  相似文献   

16.
Spin-labeled stearic acid is shown to exhibit the same beta-oxidation kinetics as normal stearic acid. ESR spectra recorded in conditions allowing beta-oxidation indicate that membrane-bound fatty acids can be directly beta-oxidized and that the rate of this reaction depends on the concentration of albumin in the medium. The regulating function of albumin and pool role of the lipidic phase of the mitochondrial membranes are discussed.  相似文献   

17.
Liver mitochondria from ethanol-fed rats display an impaired ability for protein synthesis in vitro. Studies were conducted to explore the possible mechanisms which might account for this impaired capacity of ethanol mitochondria for protein synthesis. The present studies did not demonstrate any significant ethanol-induced lesion in mitochondrial nucleic acid metabolism in organelles isolated from ethanol-fed rats for any of the parameters investigated (mtDNA content, steady-state mtRNA concentration, mtRNA polymerase activity, concentration of specific mRNAs and rRNAs, mtRNA processing). An investigation of ribosome function in isolated mitochondria demonstrated significant decreases in the number of active ribosomes (55% fewer) in mitochondria from ethanol-fed rats. Initiation of protein synthesis was also significantly depressed (46%) in ethanol mitochondria. In addition, the yield of ribosomal particles from ethanol mitochondria was decreased 32% as compared to the yield of ribosomal particles from control mitochondria. However, isolated ribosomes from ethanol mitochondria were determined to be fully functional in a poly(U)-directed phenylalanine polymerization system. Soluble translation factors from ethanol mitochondria were also found to support full activity of control ribosomes in a poly(U)-directed phenylalanine polymerization system. These results suggest strongly that the ethanol-induced depression of mitochondrial protein synthesis is due to a decrease in the number of competent ribosomes in hepatic mitochondria from chronically ethanol-fed rats.  相似文献   

18.
19.
20.
An attempt has been made to determine the location of the site at which the metabolism of ethanol interacts with that of choline to produce an increase in the oxidation of choline. The first enzyme in the oxidation pathway for choline, choline dehydrogenase, was assayed using a newly developed spectro-photometric assay and freshly isolated intact rat liver mitochondria. No changes were observed in either the ‘apparent’ V or the ‘apparent’ Km values of choline dehydrogenase for choline after ethanol ingestion. However, when the choline oxidase system was assayed, a 28% decrease in ‘apparent’ Km for choline and a 53% increase in ‘apparent’ V was observed. The effects of ATP on choline oxidase were studied further, and a 29.4% decrease was observed in mitochondrial ATP levels from freshly isolated mitochondria from the ethanoltreated rats. In vitro aging of mitochondria further decreased the level of ATP, and the rate of decrease was considerably faster during the first hour in the mitochondria from the ethanol-treated animals. The decreases in ATP from both control and experimental mitochondria were accompanied by increases in choline oxidase activity. The initial decrease in ATP was correlated with an increase in mitochondrial ATPase activity which may be related to an increase in mitochondrial Mg2+. Because chronic ethanol ingestion has resulted in decreased oxidation rates of succinate and β-hydroxybutyrate while at the same time increasing the oxidation rates of choline, the studies reported here suggest that the effect of chronic ethanol ingestion is primarily on a step that is unique to choline and which probably exists prior to the electron transport chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号