首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between plasma levels of Lp[a] and LDL was examined using dietary regimens. In 81 normolipidemic male outpatients, dietary cholesterol was increased by consuming six eggs per day from a mean (SD) level of 311 (162) to 1430 (198) mg per day. Mean (SD) LDL-cholesterol levels increased from 102 (26) mg/dl to 120 (33) mg/dl (P less than 0.001), while mean (SD) Lp[a] levels were 5.5 (6.1) mg/dl on the basal diet and 5.6 (6.4) mg/dl on the cholesterol-rich diet. No significant correlation was observed between increases in either LDL-cholesterol or apolipoprotein B to Lp[a], nor was there any relationship between individual baseline levels of Lp[a] and dietary-induced changes of Lp[a]. Fourteen of the 81 participants were reexamined under strict nutritional control. Four diets with 40% of calories as fat, but differing in the type of fat and the amount of cholesterol, were administered sequentially to all subjects. As expected, mean (SD) LDL-cholesterol and apolipoprotein B levels were highest on the saturated fat, high cholesterol diet (112 (32) mg/dl and 79 (22) mg/dl) and lowest on the polyunsaturated fat, low cholesterol diet (77 (27) mg/dl and 53 (18) mg/dl). In contrast, mean Lp[a] levels did not significantly change among the four diets (range 4.2-4.9 mg/dl). No correlation of Lp[a] responses with changes in plasma lipids, apolipoproteins, or lipoproteins was observed on any diet. These data suggest that determinants of plasma Lp[a] levels are distinctly different from the determinants of plasma LDL levels in normolipidemic males.  相似文献   

2.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

3.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

4.
We have studied the effect of diet therapy on plasma lipoprotein metabolism in heterozygous familial hypercholesterolemia. Seven patients with a mean plasma cholesterol concentration of 323 +/- 67 mg/dl were hospitalized and kept on a cholesterol-free diet for as long as 11 days without any medication. The content of dietary cholesterol was approximately 1.4 mg a day, and dietary fat, carbohydrate and protein comprised 18.0, 69.2 and 12.8% of calories, respectively. The ratio of polyunsaturated to saturated fatty acids (P/S) was 3.1. At the end of the study period, plasma cholesterol was lowered by 14.2%, from 323 to 277 mg/dl, and low density lipoprotein (LDL) cholesterol by 17.5% from 229 to 189 mg/dl. Using density gradient ultracentrifugation, the major change in LDL cholesterol was found to be in those fractions with a mean density between 1.034 and 1.042, where cholesterol concentrations decreased from 132 to 87 mg/dl (34%). These results indicate that diet therapy with free-cholesterol and a high ratio of P/S is highly effective in controlling plasma cholesterol levels in heterozygous familial hypercholesterolemia.  相似文献   

5.
Rabbits fed a wheat starch-casein diet develop a marked hypercholesterolemia and have a slower rate of removal of rabbit 125I-labeled low density lipoproteins (LDL) from plasma. Treating rabbits with mevinolin, a highly potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, at a daily dose of 20 mg per animal prevents the increase in plasma and LDL cholesterol. The mevinolin effect is mediated through an increased rate of removal of rabbit 125I-labeled LDL from plasma. To study the role of mevinolin on the regulation of the hepatic LDL receptor in rabbits, the binding of 125I-labeled LDL and 125I-labeled beta-VLDL (beta-migrating very-low-density lipoproteins) to liver membranes prepared from rabbits fed the wheat starch-casein diet with or without mevinolin was investigated. Liver membranes from wheat starch-casein-fed rabbits have no demonstrable EDTA-sensitive binding activity of 125I-labeled LDL and low (37 ng/mg protein) binding activity of 125I-labeled beta-VLDL. Treatment of the wheat starch-casein fed rabbits with mevinolin results in high levels of specific EDTA-sensitive binding of 125I-labeled LDL (28.7 ng/mg protein) and 125I-labeled beta-VLDL (120 ng/mg protein). To assess the functional role of the hepatic LDL receptor in response to mevinolin, the catabolism of 125I-labeled LDL by perfused rabbit livers was studied. Perfused livers from mevinolin-treated rabbits show a 3.3-fold increase in the rate of receptor-dependent catabolism of 125I-labeled LDL (4.6% X h-1) when compared with that of livers from rabbits not treated with mevinolin (1.4% X h-1). Thus, these studies demonstrate that mevinolin prevents the increase of plasma LDL cholesterol level in rabbits fed a wheat starch-casein diet by regulating the levels of hepatic LDL-binding sites and the rate of receptor-dependent catabolism of LDL by the liver.  相似文献   

6.
Plasma lipoprotein(a) [Lp(a)]-consisting of a disulfide-linked complex of apolipoprotein B and apolipoprotein (a)--levels are considered to be an independent risk factor for coronary heart disease. There are considerable ethnic group differences in the distribution of plasma Lp(a) levels that raise public health concerns. Although plasma Lp(a) distribution has been determined in various ethnic groups, no such information is available in Pacific Islanders. In this study we have determined the distribution and correlates of plasma Lp(a) in population-based samples of 361 American Samoans (145 men, 216 women) and 560 Western Samoans (265 men, 295 women), aged 20-70 years. Plasma Lp(a) levels were measured using a commercial enzyme-linked immunosorbent assay. The distribution of plasma Lp(a) levels in both groups was highly skewed with 73% and 65% of values in the 0-5 mg/dl range in American Samoans and Western Samoans, respectively. The mean (6.4 mg/dl) and median (2.2 mg/dl) Lp(a) levels in pooled Samoans were significantly lower when compared with other ethnic groups using the same measurement kit. Plasma Lp(a) correlated significantly with total and LDL cholesterol in both genders after correcting for the contribution of Lp(a) cholesterol, and with apolipoprotein B in women after the correction for Lp(a)-apoB, but not with age, smoking, alcohol intake, or body mass index. Our data show that Samoans, Polynesians of Pacific Islands, have strikingly lower Lp(a) levels than all other reported population groups. These data are consistent with the hypothesis that genetic factors account for interethnic group variation in plasma Lp(a) levels.  相似文献   

7.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

8.
A monoclonal antibody-based direct binding enzyme-linked immunosorbent assay (ELISA) for apoprotein (apo) B-100 has been developed for use as a reference method. The assay uses the two well-characterized monoclonal antibodies, MB24 and MB47. MB47, which recognizes an epitope at the low density lipoprotein (LDL) receptor-binding domain of apoB and is specific for apoB-100, is bound to the microtiter plate as the capture antibody. MB24, which binds an epitope in the amino terminal half of the apoB-100 and identifies both apoB-100 and apoB-48, is conjugated to horseradish peroxidase and is utilized as the indicating antibody. The assay was calibrated with LDL (d 1.030-1.050 g/ml) and the LDL protein was determined by a sodium dodecyl sulfate (SDS) Lowry procedure. The working range of the assay is 0.25-1.25 micrograms/ml. Optimal dilution of whole plasma was found to be 1:2000. In the assay, MB47 bound approximately 97% of the apoB in all low density lipoprotein, and greater than 90% of the apoB in the majority of very low density lipoprotein preparations. Small dense LDL from subjects with familial combined hyperlipidemia (FCHL) and large bouyant LDL from subjects with familial hypercholesterolemia (FH) exhibited binding properties similar to LDL from healthy normolipidemic subjects when tested in the reference ELISA. The intra- and interassay coefficients of variation averaged 2.5% and 6.0%, respectively. Plasma B-100 levels were not influenced by freezing and thawing or storage at 4 degrees C for up to 3 weeks or storage at -70 degrees C for up to 11 months. Excellent agreement was obtained between the reference ELISA and a polyclonal RIA which measures total apoB (r = 0.93, n = 105, mean ELISA B-100 value = 100 mg/dl, mean RIA value = 101 mg/dl, Sy = 9.6). Reference ELISA B-100 values of samples pretreated with bacterial lipase were not significantly increased in most samples with plasma triglyceride levels below 600 mg/dl. To help reduce the large among-laboratories variability of apoB measurements, we recommend that this candidate reference direct binding ELISA be used to assign apoB target values to apoB reference pools.  相似文献   

9.
We measured oxidized phospholipids (OxPL), lipoprotein (a) [Lp(a)], and lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) pre- and postapheresis in 18 patients with familial hypercholesterolemia (FH) and with low(~10 mg/dl; range 10-11 mg/dl), intermediate (~50 mg/dl; range 30-61 mg/dl), or high (>100 mg/dl; range 78-128 mg/dl) Lp(a) levels. By using enzymatic and immunoassays, the content of OxPL and Lp-PLA(2) mass and activity were quantitated in lipoprotein density fractions plated in microtiter wells, as well as directly on apoB-100, Lp(a), and apoA-I immunocaptured within each fraction (i.e., OxPL/apoB and Lp-PLA(2)/apoB). In whole fractions, OxPL was primarily detected in the Lp(a)-containing fractions, whereas Lp-PLA(2) was primarily detected in the small, dense LDL and light Lp(a) range. In lipoprotein capture assays, OxPL/apoB and OxPL/apo(a) increased proportionally with increasing Lp(a) levels. Lp-PLA(2)/apoB and Lp-PLA(2)/apoA-I levels were highest in the low Lp(a) group but decreased proportionally with increasing Lp(a) levels. Lp-PLA(2)/apo(a) was lowest in patients with low Lp(a) levels and increased proportionally with increasing Lp(a) levels. Apheresis significantly reduced levels of OxPL and Lp-PLA(2) on apoB and Lp(a) (50-75%), particularly in patients with intermediate and high Lp(a) levels. In contrast, apheresis increased Lp-PLA(2)-specific activity (activity/mass ratio) in buoyant LDL fractions. The impact of apheresis on Lp(a), OxPL, and Lp-PLA(2) provides insights into its therapeutic benefits beyond lowering apoB-containing lipoproteins.  相似文献   

10.
This study investigates the effect of Lipoprotein (a) (Lp(a)) on cellular cholesterol synthesis in non-diabetic (n = 7) and Type 2 (non-insulin-dependent) diabetic subjects (n = 7) with elevated levels of Lp(a) (> 20 mg/dl). N-Acetylcysteine was used to lower Lp(a) in the control subjects and their lipoproteins were re-examined after 7 days of treatment. Low-density lipoprotein (LDL) was isolated and separated from Lp(a) by sequential ultracentrifugation. Regulation of cellular cholesterol synthesis was assessed by measuring incorporation of [14C]acetate into mononuclear leucocytes in the presence of LDL and Lp(a). Cellular cholesterol content was determined by a fluorometric assay. Delivery of cholesterol to the cell was examined using [3H]cholesteryl oleate-labelled LDL or Lp(a). LDL (5 μg/ml) from non-diabetic subjects suppressed cellular cholesterol synthesis by 66.2%, while Lp(a) at a similar concentration only suppressed cholesterol synthesis by 5.8% (P < 0.001). At a concentration of 20 μg/ml, Lp(a) suppressed cholesterol synthesis by 31.7%. The situation was similar in the diabetic subjects. Serum LDL cholesterol in non-diabetic subjects was 4.2 ± 0.5 mmol/1 and the LDL esterified/free cholesterol ratio was 2.6 ± 0.2. Following treatment with N-acetylcysteine, LDL cholesterol did not change, while Lp(a) decreased significantly by 24% (P < 0.05). The LDL esterified/free cholesterol ratio decreased to 2.2 ± 0.2 (P < 0.05) and there was a significant increase in the ability of the subjects LDL to inhibit cellular cholesterol synthesis (P < 0.05). There was a significant negative correlation between plasma Lp(a) and the ability of the patients' LDL to inhibit cellular cholesterol synthesis (r = − 0.68, P < 0.01). [3H]Cholesteryl-oleate-LDL (5 μg/ml) delivered 266 ± 13 ng cholesteryl oleate/mg cell protein, while it took 20 μg of [3H]cholesteryl oleate-labelled-Lp(a) to deliver a similar concentration (315 ± 21 ng cholesteryl oleate/mg cell protein). In conclusion it appears possible that the atherogenicity of Lp(a) may be associated with its effect on the LDL receptor which alters LDL receptor uptake, LDL composition and cellular cholesterol synthesis.  相似文献   

11.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

12.
The relationships of plasma lipid and apolipoprotein (apo) concentrations to hepatic low-density lipoprotein (LDL) receptor activity were examined in 21 subjects (16 females, 5 males), who were undergoing laparotomy for non-neoplastic disease (cholecystectomy in 16). None had familial hypercholesterolemia, or renal, endocrine or hepatic disease. Ages were 37-77 years (mean, 58 years), plasma cholesterol concentrations 4.09-6.72 mmol/l (5.38) and plasma triacylglycerol concentrations 0.75-2.35 mmol/l (1.36). Receptor activity was quantified in vitro as the total saturable binding and EDTA-suppressible binding (representing apoB,E receptors) of 125I-labelled human LDL (15 micrograms protein/ml) by liver homogenate at 37 degrees C. There were no significant differences between men and women in 125I-labeled LDL binding. In the pooled data, EDTA-suppressible binding averaged 50 ng 125I-LDL protein/mg cell protein (S.D., 15). Total saturable binding averaged 2-fold greater (mean, 101 ng/mg; S.D., 32). Plasma cholesterol, LDL cholesterol and apoB concentrations were negative functions of both EDTA-suppressible binding and total saturable binding, but the correlations with EDTA-suppressible binding were stronger (cholesterol: r = -0.59, P less than 0.01; LDL cholesterol: r = -0.48, P less than 0.05; apoB: r = -0.61, P less than 0.01). Plasma triacylglycerol, high-density lipoprotein cholesterol and apoA-I concentrations were not related to either measure of receptor activity. These results provide evidence that the activity of apoB,E receptors in the liver is a major determinant of the plasma LDL concentration in middle-aged and elderly humans.  相似文献   

13.
To investigate the effects of recombinant human monocyte colony-stimulating factor (M-CSF) on plasma cholesterol metabolism, we injected M-CSF intravenously into New Zealand White rabbits (n = 13) at a dose of 100 micrograms/day for 7 days. After the treatment, the plasma cholesterol levels fell by 33.2% from 61.4 +/- 25.9 to 41.0 +/- 10.2 mg/dl (mean +/- S.D.). We also injected a large dose of M-CSF (500 micrograms/day) for 6 days into Watanabe Heritable Hyperlipidemic rabbits, which are deficient in low density lipoprotein (LDL) receptors. Again, there was a significant reduction in plasma cholesterol levels by 36.2% from 730.5 +/- 176.4 to 466.0 +/- 104.9 mg/dl (n = 4). In the kinetic studies in New Zealand White rabbits with very low density lipoprotein, LDL, and methylated LDL, the removal rates of those lipoproteins were increased 1.9-, 1.7-, and 2.0-fold, respectively, after the treatment. Immunoblot analysis of LDL receptors in the treated rabbits showed no significant changes in LDL receptor proteins in livers but a great increase in spleens and bone marrows compared with the controls. Messenger RNA was also estimated by Northern blotting in both groups, and the results were compatible with those from the immunoblot. The data suggest that M-CSF stimulates the clearance of lipoproteins containing apolipoprotein B-100 via both LDL receptor-dependent and -independent pathways in target cells of M-CSF and reduces plasma cholesterol.  相似文献   

14.
In homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits, the serum cholesterol level and serum low-density lipoprotein (LDL) level decreased from 562 +/- 76 (mean +/- S.E.) to 144 +/- 34 mg/dl and 410 +/- 56 to 90 +/- 25 mg/dl, respectively, during pregnancy, although the LDL receptor in this rabbit is genetically deficient. When Tyroxapol, which inhibits the degradation of very-low-density lipoprotein (VLDL), as well as Triton WR-1339, was injected into WHHL rabbits, the rate of the increase in serum cholesterol level in pregnant rabbits was not statistically different from that in non-pregnant rabbits. This result implied that the secretion rate of VLDL-cholesterol, the precursor of LDL-cholesterol, did not decrease during pregnancy. The amount of 125I-labeled LDL bound to LDL receptor was increased 1.8-fold in normal rabbits (from 29.3 +/- 4.3 to 52.3 +/- 4.6 ng/mg protein) and 12-fold in WHHL rabbits (from 0.5 +/- 0.2 to 6.0 +/- 0.7 ng/mg protein) during pregnancy. These results suggest that the decrease in serum cholesterol level in WHHL rabbits during pregnancy was associated with an increase in hepatic LDL receptor activity, which plays an important role in the regulation of serum cholesterol level.  相似文献   

15.
The effect of additional dietary trans fatty acids (7% energy) on plasma lipids was assessed in a double-blind comparison of four separate diets: 1, enriched with butter fat (lauric-myristic-palmitic); 2, oleic acid-rich; 3, elaidic acid-rich; 4, palmitic acid-rich. The total dietary period was 11 weeks and comprised normal foods plus specific fat supplements. In 27 mildly hypercholesterolemic men, total and LDL cholesterol were significantly lower during the 3-week oleic acid-rich diet, and were similar during the other three diets. For the four diets LDL cholesterol levels were in mg/dl: 1, 163; 2, 151; 3, 165; 4, 161. HDL cholesterol was significantly higher with the palmitic acid-rich diet, 42 mg/dl, compared with elaidic acid, 38 mg/dl, which in turn was not lower than with oleic acid, 38 mg/dl. Plasma elaidic acid concentration rose seven-fold with the trans fatty acid diet but did not increase the vulnerability of LDL to oxidative change. The elaidic acid-rich diet led to significant elevations in the level of Lp[a] compared to all the other test diets. The Lp[a] level increased to 296 +/- 220 U/l in the elaidic acid-rich period from 235 +/- 182 (mean +/- SD) in the first ("butter") period (P less than 0.001) compared with 249 +/- 204 in the palmitic acid period (P less than 0.001) and 236 +/- 201 in the oleic acid period (NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The homozygous Watanabe heritable hyperlipidemic (WHHL) rabbit, an animal model for human familial hypercholesterolemia, which has been maintained in a closed colony, has a reproductive ability which is remarkably lower than that of normal rabbits. The present study was undertaken to determine whether this low reproductive ability was associated with hyperlipidemia, since it is not associated with inbreeding depression. WHHL dams with over 600 mg/dl of serum cholesterol level showed a weaning rate of only about 20%, while dams with about 300 mg/dl of cholesterol showed a 64% weaning rate. Both conception and weaning rate seemed to decrease with a rise in serum triglyceride. The weaning age of homozygous offspring from the homozygous WHHL dams was significantly higher than homozygous offspring from heterozygous WHHL dame. The rate of increase in body weight of the offspring from WHHL dams was significantly lower than that of the offspring from heterozygous dams under 24 days of age. We concluded that the low reproductive ability, especially low nursing ability, was associated with hyperlipidemia due to the deficiency of low density lipoprotein receptors.  相似文献   

17.
Lipoprotein(a) [Lp(a)] is a low density lipoprotein (LDL), in which apolipoprotein B-100 (apo B-100) is attached to apolipoprotein(a) [apo(a)], a glycoprotein of variable size. Lp(a) may be as atherogenic as LDL. In normal populations, Lp(a) concentrations in plasma are largely determined by the apo(a) gene locus on chromosome 6, but regulation of synthesis and catabolism of Lp(a) is poorly understood. In some studies, a PvuII restriction fragment length polymorphism (RFLP) in the LDL receptor gene seems to affect concentrations of LDL in plasma, and other studies have indicated that Lp(a) catabolism could be mediated by the LDL receptor. We therefore expected that the PvuII polymorphism in the LDL receptor gene might be associated with Lp(a) levels in 170 Caucasian men aged 40 years, selected to have a high representation of low molecular weight apo(a) phenotypes. However, plasma concentrations of cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides and Lp(a) were all unrelated to the LDL receptor gene PvuII polymorphism both in the group as a whole and when it was subgrouped by apo(a) phenotype. Therefore our data do not support the concept that this particular LDL receptor gene polymorphism is associated with LDL receptor function, and our data therefore neither support nor rule out a role for the LDL receptor in Lp(a) catabolism.  相似文献   

18.
To determine the effect of isocaloric substitution of dietary fish oil for lard on the physical and chemical properties of plasma low density lipoproteins (LDL), ten adult male cynomolgus monkeys were fed diets containing 11% (by weight) fish oil or lard in a crossover study consisting of two 15-week periods with a 6-week washout period in between. The atherogenic diets contained 40% of calories as fat with 0.26 mg cholesterol/kcal. Periodic measurements of plasma lipids were made throughout the study and a large blood sample was taken near the end of each 15-week period for LDL isolation and characterization, and for quantification of plasma apolipoproteins. Values for both studies were combined (mean +/- SE; n = 10) by diet. Significantly lower high density lipoprotein (HDL) cholesterol (28 +/- 2 vs. 57 +/- 8 mg/dl), apoA-I (53 +/- 11 vs. 88 +/- 7 mg/dl), and apoE (4.2 +/- 0.9 vs. 8.2 +/- 1.5 mg/dl) concentrations were found when the animals were consuming the fish oil versus the lard diet, respectively, but total plasma cholesterol (408 +/- 35 vs. 416 +/- 14 mg/dl), LDL cholesterol (356 +/- 34 vs. 331 +/- 17 mg/dl), and apoB (227 +/- 35 vs. 205 +/- 23 mg/dl) levels were not affected. LDL size was smaller during fish oil feeding (4.2 +/- 0.1 vs. 4.9 +/- 0.1 g/mumol) and LDL particle concentration was greater (2.3 +/- 0.2 vs. 1.8 +/- 0.1 microM). During fish oil feeding LDL cholesteryl esters (CE) and phospholipids (PL) were enriched in n-3 fatty acids and were relatively poor in 18:1 and 18:2 LDL CE transition temperature was about 11 degrees C lower during fish oil feeding (32 +/- 1 vs. 44 +/- 0.5 degrees C) and was positively correlated with the number of saturated, monoun-saturated, and n-6 polyunsaturated CE molecules per LDL. The results suggested that the range of transition temperatures among individual animal LDL was primarily determined by the number of monounsaturated CE, and the accumulation of n-3 polyunsaturated CE in LDL during fish oil feeding uniformly lowered the transition temperature of the LDL particle. There was a significant decrease in the percentage of LDL phosphatidylcholine (59 +/- 1 vs. 72 +/- 1%) and an increase in lysophosphatidylcholine (13 +/- 1 vs. 5 +/- 1%) and sphingomyelin (22 +/- 1 vs. 17 +/- 1%) during fish oil feeding relative to that of lard.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

20.
Lipoprotein(a) [Lp(a)] has enhanced atherothrombotic properties. The ability of Lp(a) levels to predict adverse cardiovascular outcomes in patients undergoing coronary angiography has not been examined. The relationship between serum Lp(a) levels and both the extent of angiographic disease and 3-year incidence of major adverse cardiovascular events (MACE: death, myocardial infarction, stroke, and coronary revascularization) was investigated in 2,769 patients who underwent coronary angiography [median Lp(a) 16.4 mg/dl, elevated levels (≥30 mg/dl) in 38%]. An elevated Lp(a) was associated with a 2.3-fold [95% confidence interval (CI), 1.7–3.2, P < 0.001] greater likelihood of having a significant angiographic stenosis and 1.5-fold (95 CI, 1.3–1.7, P < 0.001) greater chance of three-vessel disease. Lp(a)≥30 mg/dl was associated with a greater rate of MACE (41.8 vs. 35.8%, P = 0.005), primarily due to a greater need for coronary revascularization (30.9 vs. 26.0%, P = 0.02). A relationship between Lp(a) levels and cardiovascular outcome was observed in patients with an LDL cholesterol (LDL-C) ≥70-100 mg/dl (P = 0.049) and >100 mg/dl (P = 0.02), but not <70 mg/dl (P = 0.77). Polymorphisms of Lp(a) were also associated with both plasma Lp(a) levels and coronary stenosis, but not a greater rate of MACE. Lp(a) levels correlate with the extent of obstructive disease and predict the need for coronary revascularization in subjects with suboptimal LDL-C control. This supports the need to intensify lipid management in patients with elevated Lp(a) levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号