首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of a pheromone‐binding protein (PBP) and a general odorant‐binding protein (GOBP) in Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) was studied. Lymantria dispar's PBP1 antibody yielded an immunoreactive band with an apparent MW of approximately 14.8 kDa, present specifically in the antennae of both sexes, with males having approximately three‐fold the quantity found in females. Furthermore, Manduca sexta's odorant‐binding protein‐2 (GOBP2) antibody recognized a band at approximately 14.5 kDa in the antennae of both sexes. Levels of both proteins were compared between scotophase and photophase periods in insects that were raised under L16:D8 or under constant light. The level of GOPB2 was significantly lower in both sexes during photophase and continuous light; whereas the level of the PBP was significantly lower in females’ antennae, in males’ antennae it remained at the same level as that found during the scotophase.  相似文献   

2.
Four recombinant odorant-binding proteins of Bombyx mori, pheromone-binding protein (PBP), general odorant-binding protein 1 (GOBP1), general odorant-binding protein 2 (GOBP2) and antennal binding protein X (ABPX), were expressed in E. coli and used to raise polyclonal antisera. Immunoblots of antennal homogenates showed that these antisera were specific. In Western blot analysis and immunocytochemical labelling experiments, the sera against recombinant PBP and GOBP2 of B. mori gave identical results as sera against native PBP and GOBP2 of Antheraea polyphemus, respectively, thus confirming earlier results obtained with the latter. Labelling consecutive cross sections of various sensillum types with all four antisera revealed different labelling patterns in male and female sensilla (s.) trichodea and s. basiconica. Long s. trichodea in males and females represented uniform labelling types, whereas for short s. trichodea, s. intermedia, and s. basiconica a great variety of labelling patterns was observed, some being more common than others. Long s. trichodea, which in males are uniformly tuned to the pheromone components bombykol and bombykal, all strongly expressed PBP; labelling with antisera against the other three odorant-binding proteins hardly was above background, only in some hairs GOBP1 was expressed somewhat more strongly. Long s. trichodea of females, which respond specifically to linalool and benzoic acid, showed a different labelling pattern. Here, we observed strong labelling with antibodies against GOBP2 and medium labelling with anti-GOBP1, sometimes with anti-ABPX. S. basiconica in both sexes most commonly co-expressed GOBP1 and GOBP2, but other patterns were occasionally found, with some of them showing PBP expression, also in females. The great variety of labelling types in short s. trichodea, s. intermedia, and s. basiconica suggests a similar variety of functional subtypes as observed in plant odour-sensitive sensilla of other moth species.  相似文献   

3.
家蚕蛹和成虫期GOBP/PBP亚家族基因簇基因定位与表达分析   总被引:1,自引:0,他引:1  
昆虫的气味结合蛋白(odorant binding proteins, OBPs)在昆虫与外界环境化学信息交流过程中起着重要作用, 对昆虫觅食、求偶、繁殖具有重要意义。普通气味结合蛋白/性信息素结合蛋白(general odorant binding protein/ pheromone binding protein, GOBP/PBP)是鳞翅目昆虫OBP家族的一个重要单系群。为进一步明确家蚕Bombyx mori GOBP/PBP基因的结构、表达及功能, 本研究利用染色体定位及半定量表达分析方法对其进行了分析。染色体定位分析显示, 这些基因以基因簇的形式存在于第19染色体的nscaf3052上, 基因结构相似, 转录方向一致, 表明这些基因可能由同源基因复制产生, 并具有类似功能。对家蚕蛹和成虫不同发育阶段的雌、雄虫多种组织中进行表达分析发现, 这些基因的表达在不同发育时期和不同组织间差异明显(P<0.05), 相对表达量均以触角中为最高, 其他非嗅觉组织中也多有表达, 性别间差异不大, 说明了该基因簇基因除了具有嗅觉相关的功能外, 很可能具有其他尚未被发现的功能。  相似文献   

4.
The genome of the silkmoth Bombyx mori contains 44 genes encoding odorant-binding proteins (OBPs) and 20 encoding chemosensory proteins (CSPs). In this work, we used a proteomic approach to investigate the expression of proteins of both classes in the antennae of adults and in the female pheromone glands. The most abundant proteins found in the antennae were the 4 OBPs (PBP, GOBP1, GOBP2, and ABP) and the 2 CSPs (CSP1 and CSP2) previously identified and characterized. In addition, we could detect only 3 additional OBPs and 2 CSPs, with clearly different patterns of expression between the sexes. Particularly interesting, on the other hand, is the relatively large number of binding proteins (1 OBP and 7 CSPs) expressed in the female pheromone glands, some of them not present in the antennae. In the glands, these proteins could be likely involved in the solubilization of pheromonal components and their delivery in the environment.  相似文献   

5.
Odorant-binding proteins were studied in the noctuid moths Agrotis segetum, Autographa gamma, Helicoverpa armigera, Heliothis virescens and Spodoptera littoralis using antisera raised against the pheromone-binding protein (PBP) and general odorant-binding protein 2 (GOBP2) of Antheraea polyphemus (Saturniidae). Proteins immunoreacting with these antisera were only found on the antennae and PBP and GOBP2 could be identified on western blots of males and females of all five species. PBPs were predominantly localized in sensilla trichodea and GOBP2 in sensilla basiconica, in good correlation with the stimulus specificity of the receptor cells in these sensilla. In H. armigera and H. virescens the majority of the s. trichodea immunoreacted with the antiserum against PBP of A. polyphemus; in A. segetum, A. gamma and S. littoralis, on the other hand, a high percentage of s. trichodea remained unlabelled. Probably, the PBP expressed in these sensilla is so different that it does not immunoreact with the antiserum used. Such a protein was found by native PAGE of antennal extracts of A. segetum and S. littoralis. These data correlate with the fact that the two heliothine species use pheromones with the same alkyl chain length as A. polyphemus, while the other three species use pheromones with shorter chains. In H. armigera, H. virescens, A. gamma and S. littoralis female antennae were also immunolabelled and a large number of PBP-expressing s. trichodea was consistently found. In S.littoralis this fits with the electrophysiologically recorded high pheromone sensitivity of female s. trichodea, whereas in females of H. armigera and H. virescens no or only weak responses to pheromone stimulation have been reported. Therefore, PBP expression in a sensillum does not necessarily imply pheromone sensitivity of its receptor cells.  相似文献   

6.
Two high-quality cDNA libraries were constructed from female and male antennae of the cotton bollworm Helicoverpa armigera (Hübner). The titers were approximately 2.0 × 106 pfu/ml for females and 2.3 × 106 pfu/ml for males, and this complies with the test requirement. From the libraries, 1750 male ESTs and 1640 female ESTs were sequenced and further analyzed. We identified 15 olfactory genes (12 are new), and 14 of them have the characteristic six conserved cysteine residues. With the exception of OBP9, all the genes were classified as classical OBP genes. By alignment and cluster analysis, the 14 classical OBPs were divided into pheromone binding protein (PBP) genes, odorant binding protein (OBP) genes, general odorant binding protein 1 (GOBP1) genes, general odorant binding protein 2 (GOBP2) genes and antennae binding protein (ABP) genes. Among these genes, we obtained three PBP genes (PBP1–PBP3) including two new PBP genes, one new ABP gene, nine new OBP genes (OBP1–OBP9), one known GOBP1 gene and one known GOBP2 gene. Furthermore, the expression patterns of these 14 classical OBP genes were investigated in various tissues by real-time quantitative polymerase chain reaction (qPCR). The results indicated that some OBP genes are expressed differently in different sexes and tissues, but most of them are highly expressed in antennae.  相似文献   

7.
Two high-quality cDNA libraries were constructed from female and male antennae of the cotton bollworm Helicoverpa armigera (Hübner). The titers were approximately 2.0 × 10? pfu/ml for females and 2.3 × 10? pfu/ml for males, and this complies with the test requirement. From the libraries, 1750 male ESTs and 1640 female ESTs were sequenced and further analyzed. We identified 15 olfactory genes (12 are new), and 14 of them have the characteristic six conserved cysteine residues. With the exception of OBP9, all the genes were classified as classical OBP genes. By alignment and cluster analysis, the 14 classical OBPs were divided into pheromone binding protein (PBP) genes, odorant binding protein (OBP) genes, general odorant binding protein 1 (GOBP1) genes, general odorant binding protein 2 (GOBP2) genes and antennae binding protein (ABP) genes. Among these genes, we obtained three PBP genes (PBP1-PBP3) including two new PBP genes, one new ABP gene, nine new OBP genes (OBP1-OBP9), one known GOBP1 gene and one known GOBP2 gene. Furthermore, the expression patterns of these 14 classical OBP genes were investigated in various tissues by real-time quantitative polymerase chain reaction (qPCR). The results indicated that some OBP genes are expressed differently in different sexes and tissues, but most of them are highly expressed in antennae.  相似文献   

8.
The distribution of odorant-binding proteins among olfactory sensilla of three moth species was studied by immuno-electron microscopy. Two polyclonal antisera were used in a post-embedding labelling protocol on sections of cryo-substituted antennae. The first was directed against the pheromone-binding protein (PBP) of Antheraea polyphemus, the second against the general odorant-binding protein (GOBP) of the same species. Immunoblots showed that these antisera were highly specific; both antisera did, however, cross-react with related proteins in the related species A. pernyi, and in the bombycid moth B. mori. PBP and GOBP were localized only in olfactory sensilla trichodea and sensilla basiconica, the principal site being the sensillum lymph surrounding the sensory dendrites. In the males of all three species, the pheromone-sensitive long sensilla trichodea exclusively contained PBP. the majority of the sensilla basiconica in both sexes in these species contained GOBP; these sensilla are known to respond to plant and other general odours. Some sensilla were not labelled by either antiserum; presumably, these held an odorantbinding protein of a different subfamily. Never were PBP and GOBP co-localized in the same sensillum. Two observations deserve special attention: (1) PBP was also found in a few sensilla in females, and (2) in B. mori, where the long sensilla trichodea have a different functional specificity in males (pheromone) and females (plant odours), the expression of the odorant-binding protein (males: PBP; females: GOBP) is similarly different. The distinct and complex distribution pattern of odorant-binding proteins supports the notion that these proteins participate in stimulus recognition.Dedicated to Professor Ya.A. Vinnikov on the occasion of his 85. birthdayThis work was partly supported by DFG grant ste 501/3-1.  相似文献   

9.
The light brown apple moth, Epiphyas postvittana (Tortricidae: Lepidoptera) uses a blend of (E)-11-tetradecenyl acetate and (E,E)-9,11-tetradecadienyl acetate as its sex pheromone. Odorant binding proteins, abundant in the antennae of male and female E. postvittana, were separated by native PAGE to reveal four major proteins with distinct mobilities. Microsequencing of their N-terminal residues showed that two were general odorant binding proteins (GOBPs) while two were pheromone binding proteins (PBPs). Full length cDNAs encoding these proteins were amplified using a combination of PCR and RACE-PCR. Sequence of the GOBPs revealed two genes (EposGOBP1, EposGOBP2), similar to orthologues in other species of Lepidoptera. Eleven cDNAs of the PBP gene were amplified, cloned and sequenced revealing two major phylogenetic clusters of PBP sequences differing by six amino acid substitutions. The position of the six amino acid differences on the protein was predicted by mapping onto the three-dimensional structure of PBP of Bombyx mori. All six substitutions were predicted to fall on the outside of the protein away from the inner pheromone binding pocket. One substitution does fall close to the putative dimerisation region of the protein (Ser63Thr). Expression of three of the cDNAs in a baculovirus expression system revealed that one class encodes an electrophoretically slow form (EposPBP1-12) while the other encodes a fast form (EposPBP1-2, EposPBP1-3). A native Western of these expressed proteins compared with antennal protein extracts demonstrated that PBP is also expressed in female antennae and that PBP may be present as a dimer as well as a monomer in E. postvittana. The fast and slow forms of EposPBP1 are allelic. Westerns on single antennal pair protein extracts and allele-specific PCR from genomic DNA both show a segregating pattern of inheritance in laboratory and wild populations. Radio labelled (E)-11-tetradecenyl acetate binds to both fast and slow PBP forms in gel assays. Taken together, the genetic and biochemical data do not support the hypothesis that these PBPs are specific for each component of the E. postvittana pheromone. However, duplication of this PBP locus in the future might allow such diversification to evolve, as observed in the other species.  相似文献   

10.
Male black cutworm moths (Agrotis ipsilon, Lepidoptera, Noctuoidea, Noctuidae), which are attracted by a three-component pheromone blend ((Z)-7-dodecenyl acetate, Z7-12:Ac; (Z)-9-tetradecenyl acetate, Z9-14:Ac; (Z)-11-hexadecenyl acetate, Z11-16:Ac), express diverse antennal pheromone binding proteins (PBPs). Two PBP isoforms (Aips-1 and Aips-2) that show 46% identity were cloned from antennal cDNA of male A. ipsilon. The protein Aips-1 displays a high degree of identity (70-95%) with PBPs of other noctuiids, but shows only 42-65% identity with the PBPs of more phylogenetically distant species. The other protein, Aips-2, represents a distinct group of PBP that includes proteins from Sphingidae and Yponomeutidae. These differences observed suggest that each of the two PBPs may be tuned to a specific pheromone ligand.  相似文献   

11.
Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from olfactory (moth) to visual (butterfly) communication, at least regarding long distance mate recognition. These findings will be clarified by additional lepidopteran genomic data, but the observation that moths and butterflies share most of the PBP/GOBP genes suggests that they also share common chemosensory-based behavioral pathways.  相似文献   

12.
Lepidopterans are known to have different pheromone‐binding proteins with differential expression patterns that facilitate specific signal transduction of semiochemicals. Two PBPs of the Asian gypsy moth, Lymantria dispar, were reported to express in both females and males, but their physiological functions were unknown. Results showed that LdisPBP1 and LdisPBP2 were expressed in the sensilla trichodea of males and the s. trichodea and s. basiconica of females. When LdisPBP1 gene was targeted by RNA interference (RNAi) in males, the expression of LdisPBP1 and LdisPBP2 decreased by 69 and 76%, respectively, and when LdisPBP2 gene was targeted by RNAi, they decreased by 60 and 42%, respectively. In females, after treatment with LdisPBP1 dsRNA, LdisPBP1 and LdisPBP2 levels were reduced by 26 and 69%, respectively, and LdisPBP2 dsRNA reduced the relative expression of them by 4 and 62%, respectively. The expression of LdisPBP1 and LdisPBP2 was interdependent. Electroantennogram (EAG) recordings showed that LdisPBPs participate in the recognition of the sex pheromone in males, and the sex pheromone and plant volatiles in females. The function of LdisPBPs represents the sex‐specific roles.  相似文献   

13.
The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins (OBP) which exist in the extracellular fluid surrounding the odorant receptors. We have isolated and partially sequenced 14 candidate OBPs from six insect (moth) species. All 14 represent a single homologous family based on conserved sequence domains. The 14 proteins can be divided into three subfamilies based on differences in tissue specific expression and similarities in amino acid sequences. All 14 proteins are specifically expressed in antennal olfactory tissue. Subfamily I represents previously described pheromone binding proteins (PBP), which are male-specific, associate with pheromone-sensitive neurons, and are highly variable in their sequences when compared among species. Subfamilies II and III are expressed in both male and female antennae, appear to associate with general-odorant-sensitive neurons, and are highly conserved when compared among species. The properties of the subfamily II and III proteins suggest these are general-odorant binding proteins (GOBP). The properties of the respective insect OBP subfamilies suggest that they have different odorant binding specificities. The association of different insect OBP subfamilies with distinct classes of olfactory neurons having different odorant specificities suggests that OBPs can act as selective signal filters, peripheral to the actual receptor proteins.  相似文献   

14.
15.
Females of the sibling silkmoth species Antheraea polyphemus and A. pernyi use the same three sex pheromone components in different ratios to attract conspecific males. Accordingly, the sensory hairs on the antennae of males contain three receptor cells sensitive to each of the pheromone components. In agreement with the number of pheromones used, three different pheromone-binding proteins (PBPs) could be identified in pheromone-sensitive hairs of both species by combining biochemical and molecular cloning techniques. MALDI-TOF MS of sensillum lymph droplets from pheromone-sensitive sensilla trichodea of male A. polyphemus revealed the presence of three major peaks with m/z of 15702, 15752 and 15780 and two minor peaks of m/z 15963 and 15983. In Western blots with four antisera raised against different silkmoth odorant-binding proteins, immunoreactivity was found only with an anti-(Apol PBP) serum. Free-flow IEF, ion-exchange chromatography and Western blot analyses revealed at least three anti-(Apol PBP) immunoreactive proteins with pI values between 4.4 and 4.7. N-Terminal sequencing of these three proteins revealed two proteins (Apol PBP1a and Apol PBP1b) identical in the first 49 amino acids to the already known PBP (Apol PBP1) [Raming, K. , Krieger, J. & Breer, H. (1989) FEBS Lett. 256, 2215-2218] and a new PBP having only 57% identity with this amino-acid region. Screening of antennal cDNA libraries with an oligonucleotide probe corresponding to the N-terminal end of the new A. polyphemus PBP, led to the discovery of full length clones encoding this protein in A. polyphemus (Apol PBP3) and in A. pernyi (Aper PBP3). By screening the antennal cDNA library of A. polyphemus with a digoxigenin-labelled A. pernyi PBP2 cDNA [Krieger, J., Raming, K. & Breer, H. (1991) Biochim. Biophys. Acta 1088, 277-284] a homologous PBP (Apol PBP2) was cloned. Binding studies with the two main pheromone components of A. polyphemus and A. pernyi, the (E,Z)-6, 11-hexadecadienyl acetate (AC1) and the (E,Z)-6,11-hexadecadienal (ALD), revealed that in A. polyphemus both Apol PBP1a and the new Apol PBP3 bound the 3H-labelled acetate, whereas no binding of the 3H-labelled aldehyde was found. In A. pernyi two PBPs from sensory hair homogenates showed binding affinity for the AC1 (Aper PBP1) and the ALD (Aper PBP2), respectively.  相似文献   

16.
Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female‐released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)‐9‐tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the “sensory neuron membrane protein 1” (SNMP1) and were associated with supporting cells expressing the pheromone‐binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1‐expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1‐neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones.  相似文献   

17.
How is Pheromone Specificity Encoded in Proteins?   总被引:9,自引:4,他引:5  
Pheromone specificity in the Lepidoptera is encoded in proteincomponents of the antennal sensillum lymph and dendritic membrane.In this paper, we highlight recent work on the molecular determinantsof pheromone binding affinity of pheromone binding proteins(PBPS) of three genera. First, we describe new cDNA sequencesfor Lymantria dispar (Lymantriidae) and Agrotis segetum (Noctuidae).These data enrich the conclusions derived from our functionalstudies. Secondly, we indicate how preparation of multimilligramquantities of the recombinant PBP ‘Apol-3’ (originallyfrom Antheraea polyphemus) has provided a platform (i) to determinethe ligand binding sites using photoaffinity labeling, (ii)to conduct structural analysis by CD and NMR, and (iii) to measurebinding affinities using a new binding assay. Thirdly, we describethe use of expression-cassette PCR technology to prepare tworelated PBPS from Antheraea perneyi to test binding affinitiesof naturally-occurring homologous PBPs. Our results supporta model in which ligand specificity for chain length, doublebond position, and terminal functionality is partially encodedin the PBPS. We propose that the final decoding is accomplishedwhen the PBP-pheromone complex activates a G-protein coupledseven-transmembrane domain receptor that contains recognitionsites for both the presented pheromone and the presenting PBP.Chem. Senses 20: 461–469, 1995.  相似文献   

18.
A cDNA clone coding for pheromone binding protein was isolated from the antennae of Helicoverpa armigera by RT-PCR and (5'/3')-RACE technique. The full-length of H. armigera pheromone binding protein (HarmPBP) was 952 bp, possessing 162 amino acid residues including a signal peptide of 20 amino acids. Its predicted molecular weight and isoelectric point were 18.26 kDa and 5.23, respectively. This deduced amino acid sequence shared some common structural features with odorant-binding proteins from several moth species, including the six conserved cysteine motif, a typical characteristic of insect's odorant-binding proteins. Northern blot showed that HarmPBP is specifically expressed in the antennae of Helicoverpa armigera and more abundantly expressed in male than female. During the antennal development, HarmPBP is first expressed about 4 days prior to adult eclosion and rises to a plateau 2 days prior to adult eclosion. In order to obtain sufficient PBP for further determining its biochemical and physiological properties, a bacterical expression vector of PBP was constructed and successfully expressed in Escherichia coli. The recombinant PBP was shown to cross-react with an anti-PBP antiserum from Antheraea polyphemus. Polyclonal antibodies against HarmPBP were used to mark the distribution of the protein in olfactory sensilla. Very strong labeling was observed in the sensillum lymph of the hair lumen and of the sensillum-lymph cavity. In the male, HarmPBP is expressed in sensilla trichodea and not in sensilla basiconica, while in the female, it is expressed both in sensilla basiconica and sensilla trichodea.  相似文献   

19.
Monoclonal antibodies (MAbs) were generated to six recombinant proteins (odorant-binding proteins; OBPs) of Manduca sexta. The specificity of each MAb was demonstrated by labeling six immunoblots, each of which contained samples of all six recombinant OBPs. The expression patterns of the six OBPs could be grouped into three classes: (1) one (GOBP1) was expressed in sensilla located throughout each annulus; (2) two (ABPX and ABP2) were expressed in the long sensilla trichoidea bordering a zone that was arranged as an arch on the periphery of each annulus; (3) three (PBP2, PBP3, and GOBP2) were expressed in shorter sensilla occupying a wedge-shaped mid-annular zone of each annulus. In female antennae, sensilla expressing these OBPs were intermixed, and the distinct zonation observed in the male antenna was absent. In males, PBP2 was co-expressed in exactly the same cells of the mid-annular zone as those expressing PBP3 and most of the same cells expressing GOBP2, although its expression overlapped with no or only a few sensilla expressing OBPs of class 1 (GOBP1) or class 2 (ABPX, ABP2). This overlap of expression or lack of overlap between PBP2 and the other OBPs for male antennae was mirrored in female antennae. In view of the restricted spatial expression of OBPs within an annulus and the diversity of possible dimeric combinations of OBPs that arises from the co-expression of multiple OBPs in a given sensillum, OBPs could contribute to the specificity of the olfactory responses of insects.This research was supported by grants from the National Science Foundation (IBN-9604095) and the University of Illinois Critical Research Initiatives  相似文献   

20.
Effects of octopamine on responses of olfactory receptor neurons of Bombyx mori males and females, specialized to the reception of pheromone components and general odorants, respectively, were compared. Injections of octopamine had no effect on the transepithelial potential of antennal sensilla trichodea in both sexes. In males, octopamine increased significantly the amplitude of receptor potentials and nerve impulse responses elicited by the pheromone components bombykol and bombykal. However, the responses of homologous female general odorant-sensitive neurons to linalool and benzoic acid were not affected. In control experiments, injection of physiological saline did not increase the responses in any neuron type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号