首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang H  Xiao R  Huang H  Xiao G 《Bioresource technology》2009,100(3):1428-1434
Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil.  相似文献   

2.
A continuous fluidized‐bed plant (PDU‐scale) for fast pyrolysis of lingnocellulosic biomass gives rise to bio‐oil yields of 65 wt.‐%. The average reactor gas residence time was 1.2 s only. The gas and charcoal yields were 15–20 wt.‐%, respectively. The bio oils were chemically characterized. The main monomeric products of the thermal degradation of carbohydrates are acetic acid, hydroxyacetaldehyde, hydroxypropanone, and levoglucosan. The process described in this paper can also be used for disposal of inorganic‐, metal‐organic‐, and chlorine‐organic contaminated waste‐wood. Inorganic compounds of wood preservatives are concentrated in the charcoal fraction and can be separated easily. Chlorine‐organic wood preservatives are mostly degraded. The process has been positively tested as a technique for disposal, recycling, and exploitation of industrial biomass waste (wood waste, grinding grit, fibre sludge, cocoa shell and modern composites like HPL). Bio oil from fast pyrolysis can be used for the production of energy and chemical feedstock. Research for these purposes is ongoing.  相似文献   

3.
Fast pyrolysis of rice husk: Product yields and compositions   总被引:3,自引:0,他引:3  
A series of pyrolysis oils and chars were prepared from agricultural by-product rice husk by the lab-scale fast pyrolysis system using induction heating. The effect of process parameters such as pyrolysis temperature, heating rate, holding time, nitrogen gas flow rate, condensation temperature and particle size on the pyrolysis product yields and their chemical compositions was examined. The maximum oil yield of over 40% was obtained at the proper pyrolysis conditions. The chemical characterization by elemental, calorific, spectroscopic and chromatographic studies showed that the pyrolysis oils derived from the fast pyrolysis of rice husk contained considerable amounts of carbonyl groups and/or oxygen content, resulting in low pH and low heating values.  相似文献   

4.
Fast pyrolysis of lignocellulosic biomass is a facile method for producing high yields of liquid fuel intermediates. However, because most fast pyrolysis oils are highly oxygenated, acidic, and unstable, identification of feedstocks that produce higher quality pyrolysis liquids is desirable. Therefore, the effect of feedstock protein content was studied by performing fast pyrolysis experiments on biomass with varying protein content. The feedstocks ranged from low-protein content, ??5% up to feedstocks with >40 wt.% protein content. Protein content was not a major factor in the yield of pyrolysis oil or the distribution of biomass carbon into the pyrolysis products. However, elevated levels of protein did cause a deoxygenation effect in the pyrolysis process with more of the oxygen rejected from the biomass as water. The deoxygenation caused the pyrolysis oil from the higher protein containing biomass to have higher energy content. Furthermore, the concentration of basic nitrogen groups caused the pyrolysis oil from the higher protein biomass to shift to a more neutral pH and lower total acid number than has been measured typically for lignocelluloic biomass pyrolysis oils. Some of the pyrolysis oils, particularly those from the mustard seed family presscakes exhibited better thermal stability than low-protein pyrolysis oils.  相似文献   

5.
熔盐热裂解生物质制生物油   总被引:1,自引:1,他引:1  
为探讨热裂解条件对熔盐中生物质热裂解制生物油的影响,在自行设计的反应器中,以摩尔比为7∶6的ZnCl2-KCl混合熔盐作为热裂解的热载体、催化剂和分散剂,考察了500 ℃时添加的金属盐和生物质原料的影响,并采用气相色谱-质谱仪 (GC-MS) 对生物油的主要组成进行了分析。结果表明:添加的金属盐显著影响热裂解产物得率,稀土金属盐显著提高生物油得率,降低生物油的含水率,添加摩尔分数为5.0% LaCl3时生物油得率为32.0%,含水率为61.5%;水稻秸秆热裂解的生物油和焦炭得率较高,稻壳热裂解的气体得率较高;金属添加盐对生物油组成有较强的选择性,LiCl和FeCl2对生物质向小分子裂解具有较强的催化作用,而CrCl3、CaCl2和LaCl3对生物油二次裂解具有抑制作用。研究结果为熔盐热裂解生物质制生物油提供了参考。  相似文献   

6.
Continuous cultivation of the yeast Candida lipolytica on gas oil was studied from the viewpoint of biomass production and oil deparaffination. Optimum conditions wore found at the dilution rate D = 0.16–0.19 when biomass productivity 1.7 g/l/hr and yield coefficient. y = 0.92 were achieved. At deparaffination to the same freezing point, more than double the production of biomass and deparaffined oil during a given time unit was achieved in a continuous process than in batch cultivation. Consumption of substrate was followed in both cultivation processes and it was confirmed that individual n-alkanes of gas oil were degraded at various rates and yields. Results proved optimum cultivation conditions to depend on concentration and composition of the paraffinic fraction of gas oil used. To achieve these conditions the continuous process may be controlled by choice; of suitable dilution rate and concentration of gas oil.  相似文献   

7.
Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).  相似文献   

8.
Zhang H  Xiao R  Wang D  He G  Shao S  Zhang J  Zhong Z 《Bioresource technology》2011,102(5):4258-4264
Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N2, CO2, CO, CH4 and H2, as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH4. CO and H2 atmospheres converted more oxygen into CO2 and H2O, respectively. GC/MS analysis of the liquid products shows that CO and CO2 atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N2 atmosphere is only 17.8 MJ/kg, while that under CO and H2 atmospheres increased to 23.7 and 24.4 MJ/kg, respectively.  相似文献   

9.
The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/wdry-biomass. This oil was converted into biodiesel with a 8.7 ± 1% w/wdry-biomass yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/wdry-biomass) and 28 ± 2% w/wdry-biomass of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.  相似文献   

10.
Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study   总被引:2,自引:0,他引:2  
The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 °C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical–chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process.  相似文献   

11.
In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600 °C), heating rate (10-50 °C/min) and nitrogen gas flow rate (50-200 cm3/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550 °C, sweeping gas flow rate of 100 cm3/min and heating rate of 50 °C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.  相似文献   

12.
Catalyzed pyrolysis of cotton-seed cake was studied under different experimental conditions. Variables investigated were pyrolysis temperature, zeolite content and sweeping gas flow rate. Experiments were carried out isothermally. Liquids, gases and char were obtained as products of pyrolysis. The distributions of these products were determined for various contents (1, 5, 10, 20 wt.% of raw material) of zeolite at four different pyrolysis temperatures. The maximum liquid yield obtained was 30.84% at a pyrolysis temperature of 550 degrees C with a sweeping gas flow rate of 100 cm(3) min(-1) in the presence of clinoptilolite (20% based on raw material) as catalyst. The pyrolytic and catalytic liquid products were analysed in detail to determine the predominant chemical classes and the identities of the major compounds present.  相似文献   

13.
The pyrolysis of sewage sludge was investigated using microwave and electrical ovens as the sources of heat, and graphite and char as microwave absorbers. The main objective of this work was to maximize the gas yield and to assess its quality as a fuel and as a source of hydrogen or syngas (H2 + CO). Both gases were produced in a higher proportion by microwave pyrolysis than by conventional pyrolysis, with a maximum value of 38% for H2 and 66% for H2 + CO. The oils obtained were also characterized using FTIR and GC-MS. The use of conventional electrical heating in the pyrolysis of sewage sludge produced an oil that could have a significant environmental and toxicological impact. Conversely, microwave pyrolysis still preserved some of the functional groups of the initial sludge such as aliphatic and oxygenated compounds, whereas no heavy PACs were detected.  相似文献   

14.
The results achieved by the cultivation of the yeast. Candida lipolytica on gas oil are referred. By using a distillation fraction of gas oil distilling between 180–400°C, containing 10–20% of n-alkanes, the optimal condition for biomass production and deparaffination were estimated for various dilution rates and various amounts of gas oil in the medium. The main factor, which influences the yield coefficient by hydrocarbon fermentation is the polyauxie of the hydrocarbon substrate. The penetration of dispersed hydrocarbons into the yeast cell is demonstrated on electron micrographs and the velocity and reversibility of this process is estimated by using tritium-traced hexadecane.  相似文献   

15.
This study aimed to investigate the extent to which it is possible to marry the two seemingly opposing concepts of heat and/or power production from biomass with carbon sequestration in the form of biochar. To do this, we investigated the effects of feedstock, highest heating temperature (HTT), residence time at HTT and carrier gas flow rate on the distribution of pyrolysis co‐products and their energy content, as well as the carbon sequestration potential of biochar. Biochar was produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650 °C), with three residence times (10, 20 and 40 min) and three carrier gas flow rates (0, 0.33 and 0.66 l min?1). The energy balance of the system was determined experimentally by quantifying the energy contained within pyrolysis co‐products. Biochar was also analysed for physicochemical and soil functional properties, namely environmentally stable‐C and labile‐C content. Residence time showed no considerable effect on any of the measured properties. Increased HTT resulted in higher concentrations of fixed C, total C and stable‐C in biochar, as well as higher heating value (HHV) due to the increased release of volatile compounds. Increased carrier gas flow rate resulted in decreased biochar yields and reduced biochar stable‐C and labile‐C content. Pyrolysis at 650 °C showed an increased stable‐C yield as well as a decreased proportion of energy stored in the biochar fraction but increased stored energy in the liquid and gas co‐products. Carrier gas flow rate was also seen to be influential in determining the proportion of energy stored in the gas phase. Understanding the influence of production conditions on long term biochar stability in addition to the energy content of the co‐products obtained from pyrolysis is critical for the development of specifically engineered biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.  相似文献   

16.
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for ''dry'' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The ''dry'' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s ''dry'' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.  相似文献   

17.
Biodiesel production catalyzed by free lipase has been drawing attention for its lower cost and faster reaction rate compared to immobilized lipase. It has been found that free lipase NS81006 could efficiently catalyze alkyl esters production and a certain amount of water is demonstrated to be necessary for the catalytic process. The effect of water content on liquid lipase NS81006-mediated methanolysis and ethanolysis for biodiesel production was first explored respectively in this paper. It was found that with water content ranging from 3% to 10% (based on oil weight), there was no significant difference in the final alkyl ester yield either in NS81006-mediated methanolysis or ethanolysis process, while the quality of biodiesel varied obviously. The acid value as well as the contents of monoglyceride and diglyceride were much lower in the lower water-containing system. With the water content decreasing from 10% to 3%, the acid value reduced from 8.24 to 4.89 mg KOH/g oil, and the content of MAG and DAG dropped to 0.31 and 0.22, from 0.62 and 0.74, respectively. Lipase could maintain rather good stability with proper alcohol adding strategy and the gradual reduction in biodiesel yield in the repeated uses resulted from the accumulation of by-product glycerol. The continuous running of lipase-mediated methanolysis of waste cooking oil was successfully realized at 30L reactor and a final methyl ester yield of over 90% could be obtained.  相似文献   

18.
Laboratory and field experiments were carried out for bioremediation of soils contaminated by fuel oil and motor oil. Bioventing was combined with the application of selected bacteria and dissolved nutrients. In the field experiments, soil gas was evacuated by air pumps from the permeable boreholes. The process was followed by both soil and gas analysis. Biodegradation of oil contamination and the microbial activity was measured by the oil and cell concentration in the soil. In 2 months, the oil content decreased considerably, and the cell number increased by one order of magnitude or more. The evacuated gas was tested for CO2, O2 and volatilized hydrocarbon content. The CO2 level proves the presence of biodegradation: a permanent high value about ten times higher than normal, could be measured for 2 months, followed by a slow decrease in the third month. Volatilized hydrocarbon content was the highest in the first 2 d. After a continuous decrease, it dropped under the threshold of measurability for the third month. Selective biodegradation of hydrocarbon mixtures (oily wastes) was investigated as well: gas Chromatographic oil analysis showed the changes in the oil composition. The appropriate microflora was working in an ideal commensalism, and as a result, all of the hydrocarbon components were degraded nearly to the same extent.  相似文献   

19.
李宁  王祥  柏雪源  李志合  张英 《生物工程学报》2015,31(10):1501-1511
在对操作流化速度进行冷态实验以及流化床温度稳定性进行测试的基础上,研制了新型流化床反应器,并使用玉米秸秆为原料,探究了热烟气气氛下快速热解制取生物油的最佳反应温度以及床料。在最佳热解条件下,对糠醛废弃物、木糖废弃物以及海藻进行了实验研究,得到了各产物产率,并对得到的生物油进行了物理特性分析。结果显示,在最佳操作流速下,当温度为500 ℃时使用白云石为床料可以获得最大生物油产率。4种原料中玉米秸秆的生物油产率最高,达到42.3 wt%。在最佳热解条件下获得了4种物料不同含量的重油和轻质油,其中重油的物理特性差别很小,重油的热值比轻质油的热值高很多。不可冷凝气的高位热值是6.5?8.5 MJ/m3,因此不可冷凝气体可以作为一种燃料气被加以利用。  相似文献   

20.
Hydroliquefaction of green wastes to produce fuels   总被引:1,自引:0,他引:1  
The direct liquefaction of a biomass composed of a mixture of wastes (straw, wood and grass) was studied using Nickel Raney as catalyst and tetralin as a solvent. Tetralin allows to solubilize green waste from 330 °C at relatively low hydrogen pressure, and avoids the recondensation of the intermediate products. The green waste deoxygenation results mainly from a decarboxylation reaction. The addition of Raney Ni in the feed, increases the gas yield due to methane formation, without diminishing the yield in solvolysis oil. The catalyst hydrogenolyses the small molecules present in the light fraction. Moreover, it improves the quality of the oil by increasing the hydrogen transfer between the solvent and the solvolysis oil. As a consequence, the oxygen content decreases and the yield of oil soluble in hexane strongly increases. The catalyst allows to obtain straight long chain alkanes (C13-C26), which result from the hydrogenation of the extractives compounds of the green waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号