首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral replication requires the help of host cell factors, whose species specificity may affect viral tropism. On the other hand, there exist host factors that restrict viral replication. The anti-viral system mediated by some of these restriction factors, which is termed intrinsic immunity and is distinguished from conventional innate and adaptive immunity, has been described as playing an important role in making species-specific barriers against viral infection. Here, we describe the current progress in understanding of such restriction factors against retroviral replication, focusing on TRIM5alpha and APOBEC, whose anti-retroviral effects have recently been recognized. Additionally, we mention cyclophilin A, which is essential for HIV-1 replication in human cells and may affect viral tropism. Understanding of these host factors would contribute to identification of the determinants for viral tropism.  相似文献   

2.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

3.
Sakuma R  Mael AA  Ikeda Y 《Journal of virology》2007,81(18):10201-10206
Dominant, constitutively expressed antiretroviral factors, including TRIM5alpha and APOBEC3 proteins, are distinguished from the conventional innate immune systems and are classified as intrinsic immunity factors. Here, we demonstrate that interferon alpha (IFN-alpha) treatment upregulates TRIM5alpha mRNA in rhesus monkey cells, which correlates with the enhanced TRIM5alpha-mediated pre- and postintegration blocks of human immunodeficiency virus replication. In human cells, IFN-alpha increases the levels of TRIM5alpha mRNA, resulting in enhanced antiviral activity against N-tropic murine leukemia virus infection. These observations indicate that the TRIM5alpha-mediated antiviral effects can be orchestrated by the conventional innate immune response. It is conceivable that TRIM5alpha plays an essential role in controlling both the initial retroviral exposure and the subsequent viral dissemination in vivo.  相似文献   

4.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5α and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a ‘fossil record’ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5α proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species–dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

5.
APOBEC3G is a retroviral restriction factor that can inhibit the replication of human immunodeficiency virus, type 1 (HIV-1) in the absence of the viral infectivity factor (Vif) protein. Virion-encapsidated APOBEC3G can deaminate cytosine to uracil in viral (−)DNA, which leads to hypermutation and inactivation of the provirus. APOBEC3G catalyzes these deaminations processively on single-stranded DNA using sliding and jumping movements. Vif is thought to primarily overcome APOBEC3G through an interaction that mediates APOBEC3G ubiquitination and results in its proteasomal degradation. However, Vif may also inhibit APOBEC3G mRNA translation, virion encapsidation, and deamination activity. Here we investigated the molecular mechanism of VifIIIB- and VifHXB2-mediated inhibition of APOBEC3G deamination activity. Biochemical assays using a model HIV-1 replication assay and synthetic single-stranded or partially double-stranded DNA substrates demonstrated that APOBEC3G has an altered processive mechanism in the presence of Vif. Specifically, VifHXB2 inhibited the jumping and VifIIIB inhibited the sliding movements of APOBEC3G. The absence of such an effect by Vif on degradation-resistant APOBEC3G D128K indicates that a Vif-APOBEC3G interaction mediates this effect. That the partially processive APOBEC3G was less effective at inducing mutagenesis in a model HIV-1 replication assay suggests that Vif co-encapsidation with APOBEC3G can promote sublethal mutagenesis of HIV-1 proviral DNA.  相似文献   

6.
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.  相似文献   

7.
8.
9.
APOBEC3G (CEM15 ) deaminates cytosine to uracil in nascent retroviral cDNA. The potency of this cellular defense is evidenced by a dramatic reduction in viral infectivity and the occurrence of high frequencies of retroviral genomic-strand G --> A transition mutations. The overwhelming dinucleotide hypermutation preference of APOBEC3G acting upon a variety of model retroviral substrates is 5'-GG --> -AG. However, a distinct 5'-GA --> -AA bias, which is difficult to attribute to APOBEC3G alone, prevails in HIV-1 sequences derived from infected individuals (e.g., ). Here, we show that APOBEC3F is also a potent retroviral restrictor but that its activity, unlike that of APOBEC3G, is partially resistant to HIV-1 Vif and results in a clear 5'-GA --> -AA retroviral hypermutation preference. This bias is also apparent in a bacterial mutation assay, suggesting that it is an intrinsic APOBEC3F property. Moreover, APOBEC3F and APOBEC3G appear to be coordinately expressed in a wide range of human tissues and are independently able to inhibit retroviral infection. Thus, APOBEC3F and APOBEC3G are likely to function alongside one another in the provision of an innate immune defense, with APOBEC3F functioning as the major contributor to HIV-1 hypermutation in vivo.  相似文献   

10.
Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.  相似文献   

11.
Schaller T  Hué S  Towers GJ 《Journal of virology》2007,81(21):11713-11721
The recent identification of antiretroviral tripartite motif-bearing restriction factors that protect against retroviral infection has revealed a novel branch of innate immunity. The factors target the retroviral capsid and inhibit infectivity soon after the capsid has entered the cytoplasm by an incompletely characterized mechanism. Restriction is species specific. For example, TRIM5alpha from Old World monkeys, but not humans, restricts human immunodeficiency virus type 1 infection. Here, we identify an antiviral TRIM5 molecule in rabbits that is closely related to antiviral TRIM5 of both primates and cattle. We demonstrate that the rabbit TRIM5 protein is active against divergent retroviruses and leads to a strong block to viral DNA synthesis and infectivity. Furthermore, we show that antiviral activity is directed against the viral capsid and that human TRIM5 proteins are dominant negative to restriction in rabbit cells. We propose that the sequence and restriction characteristics conserved between restriction factors from primates, cattle, and rabbits indicate that these factors have evolved from a common ancestor with antiretroviral properties.  相似文献   

12.
Vif is a primate lentiviral accessory protein that is crucial for viral infectivity. Vif counteracts the antiviral activity of host deaminases such as APOBEC3G and APOBEC3F. We now report a novel function of African green monkey simian immunodeficiency virus (SIVagm) Vif that promotes replication of SIVagm in human cells lacking detectable deaminase activity. We found that cyclophilin A (CypA) was excluded from wild-type SIV particles but was efficiently packaged into vif-deficient SIVagm virions. The presence of CypA in vif-defective SIVagm was correlated with reduced viral replication. Infection of CypA knockout Jurkat cells or treatment of Jurkat cells with cyclosporine A eliminated the Vif-sensitive inhibition and resulted in replication profiles that were similar for wild-type and vif-deficient SIVagm. Importantly, the inhibitory effect of CypA was restricted to virus-producing cells and was TRIM5alpha independent. The abilities of SIVagm Vif to inhibit encapsidation of CypA and to increase viral infectivity were shared by rhesus macaque SIV Vif and thus seem to be general properties of SIV Vif proteins. Exclusion of CypA from SIVagm particles was not associated with intracellular degradation, suggesting a mode of Vif action distinct from that proposed for APOBEC3G. This is the first report of a novel vif-sensitive antiviral activity of human CypA that may limit zoonotic transmission of SIV and the first demonstration of CypA encapsidation into a virus other than human immunodeficiency virus type 1.  相似文献   

13.
Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5alpha. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5alpha. We show that rhesus TRIM5alpha can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5alpha, as shown by its sensitivity to distantly related TRIM5alpha from the New World squirrel monkey. Squirrel monkey TRIM5alpha blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5alpha sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.  相似文献   

14.
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus recently isolated from human prostate cancer and peripheral blood mononuclear cells (PBMCs) of patients with chronic fatigue syndrome (CFS). We and others have shown that host restriction factors APOBEC3G (A3G) and APOBEC3F (A3F), which are expressed in human PBMCs, inhibit XMRV in transient-transfection assays involving a single cycle of viral replication. However, the recovery of infectious XMRV from human PBMCs suggested that XMRV can replicate in these cells despite the expression of APOBEC3 proteins. To determine whether XMRV can replicate and spread in cultured PBMCs even though it can be inhibited by A3G/A3F, we infected phytohemagglutinin-activated human PBMCs and A3G/A3F-positive and -negative cell lines (CEM and CEM-SS, respectively) with different amounts of XMRV and monitored virus production by using quantitative real-time PCR. We found that XMRV efficiently replicated in CEM-SS cells and viral production increased by >4,000-fold, but there was only a modest increase in viral production from CEM cells (<14-fold) and a decrease in activated PBMCs, indicating little or no replication and spread of XMRV. However, infectious XMRV could be recovered from the infected PBMCs by cocultivation with a canine indicator cell line, and we observed hypermutation of XMRV genomes in PBMCs. Thus, PBMCs can potentially act as a source of infectious XMRV for spread to cells that express low levels of host restriction factors. Overall, these results suggest that hypermutation of XMRV in human PBMCs constitutes one of the blocks to replication and spread of XMRV. Furthermore, hypermutation of XMRV proviruses at GG dinucleotides may be a useful and reliable indicator of human PBMC infection.  相似文献   

15.
16.
17.
The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-terminal cytosine deaminase domain of APOBEC3F and -3G governs retroviral hypermutation. A chimeric protein with the N-terminal cytosine deaminase domain from APOBEC3G and the C-terminal cytosine deaminase domain from APOBEC3F elicited a dinucleotide hypermutation preference nearly indistinguishable from that of APOBEC3F. This 5'-TC-->TT mutational specificity was confirmed in a heterologous Escherichia coli-based mutation assay, in which the 5'-CC-->CT dinucleotide hypermutation preference of APOBEC3G also mapped to the C-terminal deaminase domain. An N-terminal APOBEC3G deletion mutant displayed a preference indistinguishable from that of the full-length protein, and replacing the C-terminal deaminase domain of APOBEC3F with AID resulted in an AID-like mutational signature. Together, these data indicate that only the C-terminal domain of APOBEC3F and -3G dictates the retroviral minus strand 5'-TC and 5'-CC dinucleotide hypermutation preferences, respectively, leaving the N-terminal domain to perform other aspects of retroviral restriction.  相似文献   

18.
19.
20.
The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号