首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要 目的:探讨常规肌力康复训练联合血流限制训练对前交叉韧带(ACL)重建术后患者膝关节功能、股四头肌功能和平衡功能的影响。方法:选取2020年9月-2022年7月期间我院收治的ACL重建术患者82例。根据随机数字表法分为对照组(n=41,接受常规肌力康复训练)和研究组(n=41,接受常规肌力康复训练联合血流限制训练)。比较两组膝关节功能、股四头肌功能、平衡功能和并发症发生率。结果:治疗6周后,研究组膝关节Lysholm评分高于对照组,膝关节肿胀程度、大腿周径差值小于对照组,膝关节最大屈曲角度大于对照组(P<0.05)。治疗6周后,研究组股四头肌厚度薄于对照组,平均功率、峰力矩大于对照组(P<0.05)。治疗6周后,研究组站立平衡平均压力峰值差、缓慢弯膝平均压力峰值差、向下蹲位平均压力峰值差小于对照组(P<0.05)。研究组(4.88%)的并发症发生率低于对照组(24.39%)(P<0.05)。结论:ACL重建术后患者应用血流限制训练联合常规肌力康复训练进行干预,可有效改善患者膝关节功能、股四头肌功能和平衡功能,降低并发症发生率。  相似文献   

2.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

3.
摘要 目的:探讨虚拟现实平衡训练联合神经肌肉电刺激(NMES)对前交叉韧带重建术(ACLR)后患者膝关节功能、腘绳肌肌力和步行功能的影响。方法:选择2019年8月~2021年12月期间我院收治的前交叉韧带(ACL)损伤患者96例,并成功实施ACLR,采用随机数字表法分为对照组(n=48,常规康复训练、虚拟现实平衡训练)和研究组(n=48,常规康复训练、虚拟现实平衡训练联合NMES干预)。对比两组膝关节功能优良率、膝关节功能、腘绳肌肌力和步行功能。结果:研究组的临床膝关节功能优良率93.75%(45/48)高于对照组68.75%(33/48),差异有统计学意义(P<0.05)。两组干预后膝关节功能评分、膝关节活动度对均升高,且研究组高于对照组(P<0.05)。两组干预后患侧腘绳肌等长肌力升高,且研究组高于对照组(P<0.05),两组干预后健侧腘绳肌等长肌力对比无明显差异(P>0.05)。两组干预后步长、步速升高,且研究组高于对照组,患侧摆动相降低,且研究组低于对照组(P<0.05)。两组干预后被动活动察觉阀值、进行被动角度再生试验降低,且研究组低于对照组(P<0.05)。结论:虚拟现实平衡训练联合NMES应用于ACLR术后患者的疗效显著,有助于其膝关节功能恢复,提高腘绳肌肌力,改善步行功能。  相似文献   

4.
This study examines the effects of a 16-week Tai Chi (TC) training program on the muscle strength, endurance, and reaction time of the lower extremities of elderly people. A total of 40 elderly individuals (aged ?60 years) completed the study. They were divided into two groups: the TC group (11 men and 11 women) underwent a supervised TC exercise program for 16 weeks, while the control group (9 men and 9 women) received general education for a comparable time period. Pre- and post-intervention measurements were conducted. An isokinetic dynamometer was used to measure the maximum concentric strength and dynamic endurance of the knee flexors and the extensors, and the maximum concentric strength of the ankle plantarflexors and dorsiflexors. The neuromuscular response of the rectus femoris, semitendinosus, gastrocnemius, and anterior tibialis muscles was measured by the onset latency to sudden perturbations using an electromyography system. After 16 weeks, the TC group showed a 19.9% increase in muscle strength of the knee flexors (p<.000) that was significantly greater than that in the control group (p=.046). There was also a significant decrease in semitendinosus muscle latency (6.6%, p=.014) that was significantly shorter than that in the control group (p=.042). No significant training effects were found in other measures. These results suggest that improving biomechanical characteristics of lower extremity muscles may need longer TC intervention for elderly people.  相似文献   

5.
Although muscle–tendon slack length is a crucial parameter used in muscle models, this is one of the most difficult measures to estimate in vivo. The aim of this study was to determine the onset of the rise in tension (i.e., slack length) during passive stretching in both Achilles tendon and gastrocnemius medialis. Muscle and tendon shear elastic modulus was measured by elastography (supersonic shear imaging) during passive plantarflexion (0° and 90° of knee angle, 0° representing knee fully extended, in a random order) in 9 participants. The within-session repeatability of the determined slack length was good at 90° of knee flexion (SEM=3.3° and 2.2° for Achilles tendon and gastrocnemius medialis, respectively) and very good at 0° of knee flexion (SEM=1.9° and 1.9° for Achilles tendon and gastrocnemius medialis, respectively). The slack length of gastrocnemius medialis was obtained at a significantly lower plantarflexed angle than for Achilles tendon at both 0° (P<0.0001; mean difference=19.4±3.8°) and 90° of knee flexion (P<0.0001; mean difference=25.5±7.6°). In conclusion, this study showed that the joint angle at which the tendon falls slack can be experimentally determined using supersonic shear imaging. The slack length of gastrocnemius medialis and Achilles tendon occurred at different joint angles. Although reporting this result is crucial to a better understanding of muscle–tendon interactions, further experimental investigations are required to explain this result.  相似文献   

6.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

7.
The purpose of this study was to investigate muscle and tendon properties in highly trained sprinters and their relations to running performance. Fifteen sprinters and 15 untrained subjects participated in this study. Muscle thickness and tendon stiffness of knee extensors and plantar flexors were measured. Sprinter muscle thickness was significantly greater than that of the untrained subjects for plantar flexors, but not for knee extensors (except for the medial side). Sprinter tendon stiffness was significantly lower than that of the untrained subjects for knee extensors, but not for plantar flexors. The best official record of a 100-m race was significantly correlated to the muscle thickness of the medial side for knee extensors. In conclusion, the tendon structures of highly trained sprinters are more compliant than those of untrained subjects for knee extensors, but not for plantar flexors. Furthermore, a thicker medial side of knee extensors was associated with greater sprinting performance.  相似文献   

8.
Abstract

Background: Musculoskeletal involvement and cerebrovascular disease are common in sickle cell anaemia (SCA). These changes are potentially important factors that modify the control of balance in this population.

Objective: To assess balance control in adults with SCA and investigate the associations among balance, posture and muscle function.

Methods: Twenty neurologically intact (i.e. without previous episodes of overt stroke or transient ischaemic attack) adults with SCA and 18 controls were evaluated. All participants underwent static balance measurement through stabilometry, postural evaluation through photogrammetry and assessment of muscle function through handgrip and respiratory muscle strength.

Results: Compared to the controls, the adults with SCA exhibited greater displacement of the centre of mass, particularly in the mediolateral direction. Moreover, the adults with SCA exhibited greater postural deviations for the following variables: angles of the right and left hip, horizontal asymmetry of the scapula in relation to T3, angles of the right and left leg-heel and horizontal alignment of the pelvis. Handgrip strength, respiratory muscle strength and haemoglobin (Hb) levels were significantly correlated with postural balance measurements. Significant correlations between balance and posture were only observed between the variables of balance and the postural parameters that involved the angulations calculated from the vertical alignment of the pelvis, hip and ankle.

Conclusions: Neurologically intact adults with SCA exhibit damage in static balance, particularly in the mediolateral direction. These patients present postural deviations due to changes in the hip and ankle joints. In addition, balance control is related to posture, Hb level and muscle function.  相似文献   

9.
《Chronobiology international》2013,30(4-5):645-660
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 ± 5 yrs, height 1.63 ± 0.06 m and body mass 66.26 ± 4.6 kg: mean ± SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14 rad.s?1 (through 90° ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60° of knee flexion. Rectal temperature was measured during 30 min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P < 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05 rad.s?1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05 rad.s?1, extensors at 3.14 rad.s?1, and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

10.
The purpose of this study was to examine the postural corrections related to components of dynamic stability aimed to increase our understanding of successful postural control among the elderly population. This was done by comparing balance behaviour of older adults who were able to recover stability (stable) and others who failed to regain stability (unstable) with a single step after a forward fall. Thirty-eight old male adults (64+/-3yr, 176+/-6cm, 78.5+/-7.8kg) had to recover balance after a sudden induced forward fall. All participants performed maximal isometric ankle plantarflexion and knee extension contractions on a dynamometer. The elongation of the gastrocnemius medialis and the vastus lateralis tendon and aponeuroses during isometric contraction was examined by ultrasonography. There were no differences in leg-extensor muscle strength or tendon stiffness between the two groups showing that the muscle tendon capacities may not be the reason for the observed differences in dynamic stability control. The unstable participants created a higher horizontal ground reaction push-off force of the support limb in the second part ( approximately 260ms after release) of the phase until touchdown leading to an unstable body position at touchdown. The results indicate deficits in the way to achieve balance related to mechanisms responsible for dynamic stability control within the elderly population.  相似文献   

11.
Objectives:It is unclear whether peak torque and rate of torque development (RTD) measurements can characterize functional differences in older adults according to their performance on a six-minute walk test. This study aimed to examine the efficacy of isometric peak torque and RTD characteristics of the knee extensors to differentiate between functional status in older women who are able (higher functioning) versus those who are unable (lower functioning) to walk 550 m in six minutes.Methods:Ten higher functioning (67±4 years) and 10 lower functioning (68±4 years) older women performed three isometric knee extension maximal voluntary contractions followed by a six-minute walk test. Peak torque and early (RTD100), late (RTD200), and maximum (Peak RTD) RTD measurements were obtained from each contraction.Results:The higher functioning group exhibited greater peak torque, Peak RTD, RTD100, and RTD200 compared to the lower functioning group (P≤0.011), with larger differences occurring for RTD characteristics (39.9-54.9%) than peak torque (20.3%). Multiple regression analysis indicated that RTD200 was the single best predictor of the distance covered during the six-minute walk test (R2=0.437, P=0.002).Conclusions:These findings suggest that knee extensor muscle strength, and in particular RTD, may be an effective discriminator and predictor of walking performance ability in older women.  相似文献   

12.
Abstract

Purpose: To determine whether unilateral leg whole-body vibration (WBV) strength training induces strength gain in the untrained contralateral leg muscle. The secondary aim was to determine the potential role of spinal neurological mechanisms regarding the effect of WBV exercise on contralateral strength training.

Materials and Methods: Forty-two young adult healthy volunteers were randomized into two groups: WBV exercise and Sham control. An isometric semi-squat exercise during WBV was applied regularly through 20 sessions. WBV training was applied to the right leg in the WBV group and the left leg was isolated from vibration. Sham WBV was applied to the right leg of participants in the Control group. Pre- and post-training isokinetic torque and reflex latency of both quadricepses were evaluated.

Results: The increase in the strength of right (vibrated) knee extensors was 9.4?±?10.7% in the WBV group (p?=?.001) and was 1.2?±?6.6% in the Control group (p?=?.724). The left (non-vibrated) extensorsvibrated) knee extensors w4?±?8.4% in the WBV group (p?=?.038), whereas it decreased by 1.4?±?7.0% in the Control (p?=?.294). The strength gains were significant between the two groups. WBV induced the reflex response of the quadriceps muscle in the vibrated ipsilateral leg and also in the non-vibrated contralateral leg, though with a definite delay. The WBV-induced muscle reflex (WBV-IMR) latency was 22.5?±?7.7?ms for the vibrated leg and 39.3?±?14.6?ms for the non-vibrated leg.

Conclusions: Chronic WBV training has an effect of the cross-transfer of strength to contralateral homologous muscles. The WBV-induced muscular reflex may have a role in the mechanism of cross-transfer strength.  相似文献   

13.
Objectives:To examine maximal strength and fatigability of the knee extensors, and mechanomyographic amplitude (MMGRMS)–force relationships of the vastus lateralis (VL) during repetitive muscle actions for 5 aerobically-(AT), 5 resistance-trained-(RT), and 5 sedentary (SED) individuals.Methods:Participants performed maximal voluntary contractions before (MVCPRE) and after (MVCPOST) attempting 20 isometric trapezoidal muscle actions at 50% MVCPRE. MMG was recorded from the VL. b terms (slopes) were calculated from the natural log-transformed MMGRMS-force relationships for each participant (increasing and decreasing segments). MMGRMS was averaged during steady force.Results:RT had greater MVCPRE (P<0.001) and MVCPOST (P=0.001–0.004) than AT and SED. Only AT completed 20 muscle actions and exhibited no decrease in MVCPOST (P=0.149). The b terms were greater for RT than AT during the increasing segment of the first contraction (P=0.001) and decreasing segment of the last contraction (P=0.033). The b terms were also greater for RT (P=0.006) during the increasing than decreasing segment for the first contraction. MMGRMS during steady force was greater during the last contraction when collapsed across training status (P=0.021).Conclusion:Knee extensor MVC and fatigability, and motor unit control strategies for the VL during a series of repetitive contractions were influenced by chronic training status.  相似文献   

14.
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-DeltaX or F-epsilon relationships between men and women. DeltaX and epsilon were 9.8 +/- 2.6 mm and 5.3 +/- 1.6%, respectively, and were positively correlated to F (r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-DeltaX (P < 0.01) and F-epsilon (P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.  相似文献   

15.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

16.
摘要 目的:观察MOTOmed下肢运动训练联合等速肌力训练在脑卒中偏瘫患者的应用价值。方法:根据随机数字表法将2019年5月-2022年12月期间南京医科大学附属脑科医院收治的158例脑卒中偏瘫患者分为对照组(n=79,接受等速肌力训练)和观察组(n=79,对照组基础上接受MOTOmed下肢运动训练)。对比两组下肢运动功能、下肢肌张力、步行步态功能。结果:干预12周后,两组Fugl-Meyer运动功能评定量表(FMA)、Berg平衡量表(BBS)评分升高,且观察组高于对照组同期(P<0.05)。干预12周后,两组膝关节后伸(FKE)、前屈(FKF)、髋关节后伸(FHE)、前屈(FHF) 肌张力升高,且观察组高于对照组同期(P<0.05)。干预12周后,两组步速、步频、步长、功能性步行分级量表(FAC)评分升高,且观察组高于对照组同期(P<0.05)。结论:MOTOmed下肢运动训练联合等速肌力训练治疗脑卒中偏瘫患者,可有效改善下肢运动功能、下肢肌张力以及步行步态功能。  相似文献   

17.
This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0 ± 3.8 yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3 days per week, over a period of 6 weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P < 0.001), but did not change in the endurance (P = 0.875) or control group (P = 0.995). CoV of force was reduced after the strength training intervention only (P < 0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods.  相似文献   

18.
The aim of the study was to examine whether six weeks of endurance training minimizes the effects of fatigue on postural control during dynamic postural perturbations. Eighteen healthy volunteers were assigned to either a 6-week progressive endurance training program on a cycle ergometer or a control group. At week 0 and 7, dynamic exercise was performed on an ergometer until exhaustion and immediately after, the anterior–posterior centre of pressure (COP) sway was analyzed during full body perturbations. Maximal voluntary contractions (MVC) of the knee flexors and extensors, muscle fiber conduction velocity (MFCV) of the vastus lateralis and medialis during sustained isometric knee extension contractions, and power output were measured. Following the training protocol, maximum knee extensor and flexor force and power output increased significantly for the training group with no changes observed for the control group. Moreover, the reduction of MFCV due to fatigue changed for the training group only (from 8.6% to 3.4%). At baseline, the fatiguing exercise induced an increase in the centre of pressure sway during the perturbations in both groups (>10%). The fatiguing protocol also impaired postural control in the control group when measured at week 7. However, for the training group, sway was not altered after the fatiguing exercise when assessed at week 7. In summary, six weeks of endurance training delayed the onset of muscle fatigue and improved the ability to control balance in response to postural perturbations in the presence of muscle fatigue. Results implicate that endurance training should be included in any injury prevention program.  相似文献   

19.
While microgravity exposure is known to cause deterioration of skeletal muscle performance, little is known regarding its effect on tendon structure and function. Hence, the aims of this study were to investigate the effects of simulated microgravity on the mechanical properties of human tendon and to assess the effectiveness of resistive countermeasures in preventing any detrimental effects. Eighteen men (aged 25-45 yr) underwent 90 days of bed rest: nine performed resistive exercise during this period (BREx group), and nine underwent bed rest only (BR group). Calf-raise and leg-press exercises were performed every third day using a gravity-independent flywheel device. Isometric plantar flexion contractions were performed by using a custom-built dynamometer, and ultrasound imaging was used to determine the tensile deformation of the gastrocnemius tendon during contraction. In the BR group, tendon stiffness estimated from the gradient of the tendon force-deformation relation decreased by 58% (preintervention: 124 +/- 67 N/mm; postintervention: 52 +/- 28 N/mm; P < 0.01), and the tendon Young's modulus decreased by 57% postintervention (P < 0.01). In the BREx group, tendon stiffness decreased by 37% (preintervention: 136 +/- 66 N/mm; postintervention: 86 +/- 47 N/mm; P < 0.01), and the tendon Young's modulus decreased by 38% postintervention (P < 0.01). The relative decline in tendon stiffness and Young's modulus was significantly (P < 0.01) greater in the BR group compared with the BREx group. Unloading decreased gastrocnemius tendon stiffness due to a change in tendon material properties, and, although the exercise countermeasures did attenuate these effects, they did not completely prevent them. It is suggested that the total loading volume was not sufficient to completely prevent alterations in tendon mechanical properties.  相似文献   

20.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号