首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
水稻准确地感知外部环境信号,通过内部复杂的基因网络做出反应,在一年中最适合的时候开花繁殖。与长日促进长日模式植物拟南芥开花相反,短日促进短日模式植物水稻开花。通过对水稻和拟南芥的开花期调控机理的对比分析,发现水稻和拟南芥有着一些相对保守的开花期控制基因,其调控机理也是相似的。另外,水稻也有一些独特的开花期控制基因和开花途径。本文着重从光周期对水稻开花期的调控途径和作用机理角度进行了阐述,并对水稻开花期的自然变异与其育种应用、生物钟关联基因、光中断现象和临界日长现象以及开花期与产量的关系进行了总结。  相似文献   

2.
In many plants the transition from vegetative growth to flowering is controlled by environmental cues. One of these cues is day length or photoperiod, which synchronizes flowering of many species with the changing seasons. Recently, advances have been made in understanding the molecular mechanisms that confer photoperiodic control of flowering and, in particular, how inductive events occurring in the leaf, where photoperiod is perceived, are linked to floral evocation that takes place at the shoot apical meristem. We discuss recent data obtained using molecular genetic approaches on the function of regulatory proteins that control flowering time in Arabidopsis thaliana. These data are compared with the results of physiological analyses of the floral transition, which were performed in a range of species and directed towards identification of the transmitted floral singals.  相似文献   

3.
The control of flowering in time and space   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
植物由营养生长向生殖生长转变过程中光周期调控起着重要的作用.CONSTANS (CO)是光周期途径中的特有基因,为探讨高羊茅FaCONSTANS(FaCO)基因响应日照长短从而启动植物开花的机理,利用实时荧光定量qRT-PCR技术分析在长日照、短日照、持续光照、持续黑暗条件下FaCO基因的表达水平.构建过表达载体p13...  相似文献   

6.
The role of cryptochrome 2 in flowering in Arabidopsis   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the genetic interactions between cry2 and the various flowering pathways in relation to the regulation of flowering by photoperiod and vernalization. For this, we combined three alleles of CRY2, the wild-type CRY2-Landsberg erecta (Ler), a cry2 loss-of-function null allele, and the gain-of-function CRY2-Cape Verde Islands (Cvi), with mutants representing the various photoreceptors and flowering pathways. The analysis of CRY2 alleles combined with photoreceptor mutants showed that CRY2-Cvi could compensate the loss of phyA and cry1, also indicating that cry2 does not require functional phyA or cry1. The analysis of mutants of the photoperiod pathway showed epistasis of co and gi to the CRY2 alleles, indicating that cry2 needs the product of CO and GI genes to promote flowering. All double mutants of this pathway showed a photoperiod response very much reduced compared with Ler. In contrast, mutations in the autonomous pathway genes were additive to the CRY2 alleles, partially overcoming the effects of CRY2-Cvi and restoring day length responsiveness. The three CRY2 alleles were day length sensitive when combined with FRI-Sf2 and/or FLC-Sf2 genes, which could be reverted when the delay of flowering caused by FRI-Sf2 and FLC-Sf2 alleles was removed by vernalization. In addition, we looked at the expression of FLC and CRY2 genes and showed that CRY2 is negatively regulated by FLC. These results indicate an interaction between the photoperiod and the FLC-dependent pathways upstream to the common downstream targets of both pathways, SOC1 and FT.  相似文献   

7.
拟南芥开花诱导途径分子机制研究进展   总被引:1,自引:0,他引:1  
拟南芥是分子和遗传学研究的模式植物,对植物花发育及控制花形态建成的分子遗传机制的研究进展主要是建立在对拟南芥研究的基础之上,拟南芥开花主要受到4个途径(自主途径、赤霉素途径、春化作用和光周期途径)的内源和外界信号的同时诱导.该文对近年来国内外有关拟南芥开花诱导的4个途径的分子机制研究进展进行综述,并初步绘制出各开花诱导途径基因间的调控网络图,以进一步明确基因间的相互作用模式及其在整个开花过程中的作用地位.  相似文献   

8.
刘永平  杨静  杨明峰 《生物工程学报》2015,31(11):1553-1566
开花是植物从营养生长转换为生殖生长的生理发育过程,受光周期、温度、激素、年龄等多个因素诱导,在植物生长和物种进化中处于核心地位。综合不断更新的开花分子遗传结果,将植物响应各种内源和外源信号启动开花的途径归纳为:经典的光周期途径、春化途径、自主途径、赤霉素途径和较新的年龄途径共5条。旨在描绘出这些不同途径间既独立又相互影响的复杂网络关系,为进一步探索和阐述更多植物的开花分子机理提供借鉴与参考。  相似文献   

9.
The transition from vegetative to reproductive growth phase is a pivotal and complicated process in the life cycle of flowering plants which requires a comprehensive response to multiple environmental aspects and endogenous signals. In Arabidopsis, six regulatory flowering time pathways have been defined by their response to distinct cues, namely photoperiod, vernalization, gibberellin, temperature, autonomous and age pathways, respectively. Among these pathways, the autonomous flowering pathway accelerates flowering independently of day length by inhibiting the central flowering repressor FLC. FCA, FLD, FLK, FPA, FVE, FY and LD have been widely known to play crucial roles in this pathway. Recently, AGL28, CK2, DBP1, DRM1, DRM2, ESD4, HDA5, HDA6, PCFS4, PEP, PP2A-B’γ, PRMT5, PRMT10, PRP39-1, REF6, and SYP22 have also been shown to be involved in the autonomous flowering time pathway. This review mainly focuses on FLC RNA processing, chromatin modification of FLC, post-translational modification of FLC and other molecular mechanisms in the autonomous flowering pathway of Arabidopsis.  相似文献   

10.
The rotation of our planet results in regular changes in environmental cues such as daylength and temperature, and organisms have evolved a molecular oscillator that allows them to anticipate these changes and adapt their development accordingly. In many plants, the transition from vegetative to reproductive growth is controlled by photoperiod, which synchronises flowering with favourable seasons of the year. Here, we describe the notable progress that has been made in identifying the molecular mechanisms that measure daylength and control of flowering time in Arabidopsis, a long day (LD) plant, and in rice, a short day (SD) plant. Although the components of the Arabidopsis regulatory network seem to be conserved in other species, the difference in the function of particular genes may contribute to the reverse response to daylength observed between LD and SD plants. We also highlight the recent advances in understanding the regulatory mechanisms that underlie other developmental transitions controlled by photoperiod, including tuberisation and the onset of dormancy in the buds of perennial plants.  相似文献   

11.
In Arabidopsis, expression of FLC and FLC-related genes (collectively called FLC clade) contributes to flowering time in response to environmental changes, such as day length and temperature, by acting as floral repressors. VIN3 is required for vernalization-mediated FLC repression and a VIN3 related protein, VIN3-LIKE 1/VERNALIZATION 5 (VIL1/VRN5), acts to regulate FLC and FLM in response to vernalization.13 VIN3 also exists as a small family of PHD finger proteins in Arabidopsis, including VIL1/VRN5, VIL2/VEL1, VIL3/VEL2 and VIL4/VEL3. We showed that the PHD finger protein, VIL2, is required for proper repression of MAF5, an FLC clade member, to accelerate flowering under non-inductive photoperiods. VIL2 acts together with POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) to repress MAF5 in a photoperiod dependent manner.Key words: photoperiod, chromatin, floweringThe decision to flower is critical to the survival of flowering plants. Thus, plants sense environmental cues to initiate floral transition at a time that both ensures and optimizes their own reproductive fitness. Using a model plant, Arabidopsis thaliana, genetic studies have shown that the regulation of floral transition mainly consists of four genetic pathways: the inductive photoperiod pathway, the autonomous pathway, the vernalization pathway and the gibberellin pathway.4 In Arabidopsis, these four flowering pathways eventually merge into a group of genes called floral integrators, including FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY). Based on the response to specific photoperiod conditions, the flowering behaviors of plants can be classified into three groups: long day (LD), short day (SD) and day neutral response.5,6 Depending on the requirement of day length, plants show either obligate or facultative responses. For example, henbane, carnation and ryegrass are obligate long day (LD) flowering plants which flower under increasing inductive photoperiod but do not flower at all under non-inductive photoperiod.5 On the other hand, plants including Arabidopsis, wheat, lettuce and barley, are considered to be facultative flowering plants. Thus, these plants exhibit early flowering under LD and late-flowering under non-inductive short days (SD). Studies on photoperiodic flowering time mainly focus on the inductive LD-photoperiod pathway in Arabidopsis.  相似文献   

12.
Regulation of flowering by photoperiod in Arabidopsis   总被引:2,自引:0,他引:2  
  相似文献   

13.
A quantitative understanding of the phases of sensitivity to photo-thermal environment is important if the accuracy of flowering models is to be improved and if the timing of long and short day treatments in protected cropping is to be optimized. A simple method of quantifying the duration of the phases of sensitivity to photoperiod is through the use of reciprocal transfer experiments where plants are transferred between long and short days at regular intervals throughout development. The advantages and disadvantages of different analytical approaches used to analyse such data sets are examined. Inconsistencies between the approaches are highlighted, as are differences in the way authors have interpreted data. The problem of confounding the effects of photoperiod and light integral is considered, as is the need to separate the number of inductive cycles needed for flower commitment from the length of the juvenile phase. The effects of photo-thermal environment on the duration of these phases of photoperiod sensitivity are discussed, together with topics requiring further development.  相似文献   

14.
The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.  相似文献   

15.
CK2 (Casein kinase II), a ubiquitous Ser/Thr kinase, affects multiple developmental and stress response pathways in Arabidopsis, including flowering time under both long- and short-day conditions through the photoperiod and autonomous pathways. CK2 phosphorylates central clock components, CCA1 and LHY, to modulate circadian clock that regulates flowering time through the photoperiod pathway. However, how CK2 regulates flowering time through the autonomous pathway is still unknown. Analyses of phosphorylation sites using several prediction softwares show that most of the autonomous pathway components have multiple CK2 phosphorylation sites. CK2 might phosphorylate any or all of these components to modulate their activity/stability resulting in altered expression of FLC that drives flowering time through the autonomous pathway.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号