首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method for the separation and simultaneous determination of urinary D- and L-lactic acid enantiomers by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) is presented. The chiral separation was optimized on a Chirobiotic teicoplanin aglyocone (TAG) column. Most interestingly, the addition of water in small volume fraction to the polar organic mobile phase was found to significantly improve the chromatography. Calibration curves were linear (r2>0.9950) over the range 3-1000 mg/L for L-lactic acid and 0.5-160.8 mg/L for D-lactic acid. The limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) were determined experimentally (n=3) to be 0.2 and 0.5mg/L for L-lactic acid and 0.4 and 1.3 mg/L for D-lactic acid, respectively. The normal patient range of L-lactic acid was 1-20 microg/mg creatinine with an elevated value of 85 microg/mg creatinine. For D-lactic acid, the range of normal values were between 0 and 5 microg/mg creatinine with an elevated value of 40 microg/mg creatinine. Finally, the validated method allows for rapid analysis with a total run time of 7.5 min.  相似文献   

2.
A sensitive and specific method for the determination of trans,trans-muconic acid (t,t-MA) in urine is described. After clean-up on an anion-exchange cartridge, t,t-MA was derivatized with BF3-methanol to the dimethyl ester and analyzed by gas chromatography-mass spectrometry (GC-MS), with 2-bromohexanoic acid as an internal standard. The limit of detection was 0.01 mg/l, the coefficient of variation for duplicate analysis in a series of urine samples (n = 50) was 2.6% and the recovery rate ranged from 93.3 to 106.3%. The between-day and within-day precision for the analysis were 7.4 and 14.6%, respectively. The method was applied to the determination of t,t-MA in urine samples from smokers and non-smokers. The mean concentration of t,t-MA in urine of 10 smokers was 0.09 ± 0.04 mg/g creatinine and was significantly (p = 0.012) higher than that found in urine of 10 non-smokers (0.05 ± 0.02 mg/g creatinine). In contrast to the results obtained with the commonly used high-performance liquid chromatographic ultraviolet detection (HPLC-UV) methods, no interference between t,t-MA and other urinary compounds was found. This GC-MS method is both specific and sensitive for biomonitoring of low environmental benzene exposure.  相似文献   

3.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

4.
Tobacco smoking during pregnancy is associated with a variety of negative consequences not only for the mother, but also for the developing fetus. Many studies have shown that carcinogens contained in tobacco smoke permeate across the placenta, and are found in fetus. The aim of the study was to determine the prenatal exposure to tobacco-specific carcinogenic N-nitrosamines on the basis of measurements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine of smoking and second-hand smoke (SHS) exposed women and in the first urine of their newborns. A questionnaire documenting demographics and socio-economical data, smoking habits and exposure to SHS was completed by 121 delivering women near or at term. Maternal concentrations of cotinine and NNAL were measured in urine of the mother and the first urine of her newborn infant by liquid chromatography tandem mass spectrometry (LC/MS/MS). The mean concentration of cotinine was 439.2 ng/mg creatinine and NNAL concentration in urine of smoking women was 74.0 pg/mg creatinine, and for her newborn 78.6 pg/mg creatinine. Among mothers exposed to SHS, cotinine and NNAL mean concentration were 23.1 ng/mg creatinine, and 26.4 pg/mg creatinine. In newborns of SHS exposed mothers during pregnancy the mean concentration of NNAL was 34.1 pg/mg creatinine, respectively. Active tobacco smoking as well as passive exposure to smoking during pregnancy is an important source of tobacco specific N-nitrosamines to the fetuses as evidenced by increased concentrations of this carcinogen. Determination of NNAL in maternal urine samples can be a useful biomarker of prenatal exposure of newborn to carcinogenic nitrosamines.  相似文献   

5.
OBJECTIVE: To develop a routine method for quantitative measurement of the folate catabolites p-aminobenzoylglutamate (pABG) and acetamidobenzoylglutamate (apABG) in serum and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). DESIGN AND METHODS: Urine, serum and aqueous standards were thawed. Two microliters of d3-glutamic acid (d3-Glu; 1 mmol/L) was added to 200 uL of specimen as internal standard. The samples were acidified with 4 uL 6N HCL, and aliquots were precipitated with 2 volumes (412 uL) of acetonitrile. For urine specimens 30 volumes (6.18 mL) of acetonitrile was used. Samples were centrifuged at 1900 x g for 10 min and the supernatant (10 microL) injected into a Biorad CAT/MET analytical column fitted to the LC-MS/MS. Detection of the catabolites was by selective multiple ion monitoring (multiple SRM) of the respective transitions. Urine and serum samples were analysed in a group of healthy volunteers and in anonymous samples from patients being tested for PTH and urinary catecholamines. RESULTS: pABG and apABG eluted at 5.2 and 4.74 min, respectively while the d3-glutamic acid eluted at around 7 min. Limit of quantitation (LOQ) for both catabolites was 10 nmol/L (which is equivalent to 33.3 fmol for a 10 microL injection). Limit of detection (LOD) was 1 nmol/L based on a signal to noise ratio of 5:1. A linear calibration curve was obtained from 10 to 100 nmol/L for serum specimens and from 10 to 200 micromol/L for urines. Imprecision for spiked serum samples (n=10) was between 2.5 and 20% for apABG and 4.5 and 21% for pABG (at 10 and 100 nmol/L, respectively). Imprecision for spiked urine samples (n=10) was between 2.9 and 4.0% for apABG and 6.0-12.7% for pABG. Recoveries were between 80 and 122% for serum samples and between 92 and 102% for urine specimens. Total folate catabolites in random urine samples from volunteers (n=5) are 2.9+/-2.3 umol/L (mean+/-S.D.). This group also had total serum catabolites of 11.9+/-7.6 nmol/L and serum folate of 35.3+/-5.8 nmol/L. Serum from patients being tested for PTH (n=11) had serum folate levels of 27.0+/-10.4 nmol/L with total serum catabolites of 20.4+/-23.8 nmol/L. Levels of serum folate and total catabolites in pregnant women (n=18) were 33.9+/-22.7 and 11.4+/-8.7 nmol/L, respectively. Mean urinary folate catabolites in patients being tested for urinary catecholamines (n=19) was 581.8+/-368.4 nmol/L. CONCLUSION: A simple, reliable and highly specific method by LC-MS/MS for detecting and quantifying the folate catabolites pABG and apABG was developed. This enables, for the first time, the routine clinical analysis of folate utilization in patients.  相似文献   

6.
P-Cresol, a partially lipophilic and protein-bound compound is related to several biochemical alterations in uremia. Because p-cresol kinetics have never been studied, we investigated its kinetic behavior in rats. Results were compared with those obtained with creatinine, a water soluble, non-protein-bound uremic retention solute, which is currently used as a marker of uremic retention. Healthy rats were divided into 3 groups with comparable body weight: (1) a control group (n=6); (2) a group (n=7) which received an intravenous bolus of 3 mg p-cresol; and (3) a group (n=5) which received an intravenous bolus of 18 mg creatinine. Blood samples were collected at 0, 5, 30, 60, 120, 180 and 240 minutes after administration for the determination of p-cresol and creatinine. Urine was collected at 1-hour intervals. p-Cresol concentrations were assessed by HPLC. Pharmacokinetic parameters of p-cresol and creatinine were calculated from the serum concentration-time curves using non-compartmental analysis. Each compound showed a concentration at time point 5 min (p-cresol: 6.7 +/- 1.4 mg/L and creatinine: 141 +/- 12 mg/L) which was comparable with values observed in uremic patients; these concentrations decreased gradually towards min 240 (p-cresol: 0.6 +/- 0.3 mg/L and creatinine: 4 +/- 2 mg/L, p<0.05 vs. 5 min in both cases). No p-cresol was found in the serum of control rats and these rats showed no changes in serum concentration of creatinine. Urinary excretions were strikingly different (p-cresol: 23 +/- 10% and creatinine: 95 +/- 25% of the administered dose, p<0.05). The half-life of p-cresol was twice as long as that of creatinine (1.5 +/- 0.8 vs. 0.8 +/- 0.1 h, p<0.05). Total clearance (CLt) was much higher for p-cresol than for creatinine (23.2 +/- 4.5 vs. 8.1 +/- 0.4 mL/min/kg, p<0.01); renal clearance (CLr), however, was substantially lower for p-cresol (4.8 +/- 2.0 vs. 8.2 +/- 1.9 mL/min/kg, p<0.05). Whereas CLt and CLr were similar for creatinine, CLt of p-cresol largely exceeded its CLr (p<0.05). The volume of distribution (Vd) was also much larger for p-cresol than for creatinine (2.9 +/- 1.4 vs. 0.6 +/- 0.1 L/kg, p<0.01). After injection of p-cresol, an additional chromatographic peak appeared in serum and in urine samples. Although at min 240 serum concentration of p-cresol had decreased to 10% of the peak value, only 23% of the administered amount was excreted in the urine and the CLr was +/- 50% lower compared to that of creatinine. Non-renal clearance and Vd of p-cresol were, however, substantially larger. These data may be of value to explain the different behavior of p-cresol in renal failure and dialysis, compared to creatinine.  相似文献   

7.
We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit of detection (5.7-21 nmol/L), within-day (2.9-19%) and between-day (4.8-19%) analytical variation of peak areas, linearity (R2: 0.918-0.999), and standard deviation for retention time (<0.52 min) of the method were assessed by means of addition of seven 3-8 amino acid peptides (0-500 nmol/L). Relating the amount of injected urine to the area under the curve (AUC) of the chromatographic trace at 214 nm better reduced the coefficient of variation (CV) of the AUC of the total ion chromatogram (CV = 10.1%) than relating it to creatinine (CV = 38.4%). LC-MS data were processed, and the common peak matrix was analyzed by principal component analysis (PCA) after supervised classification by the nearest shrunken centroid algorithm. The feasibility of the method to discriminate urine samples of differing compositions was evaluated by (i) addition of seven peptides at nanomolar concentrations to blank urine samples of different origin and (ii) a study of urine from kidney patients with and without proteinuria. (i) The added peptides were ranked as highly discriminatory peaks despite significant biological variation. (ii) Ninety-two peaks were selected best discriminating proteinuric from nonproteinuric samples, of which 6 were more intense in the majority of the proteinuric samples. Two of these 6 peaks were identified as albumin-derived peptides, which is in accordance with the early rise of albumin during glomerular proteinuria. Interestingly, other albumin-derived peptides were nondiscriminatory indicating preferential proteolysis at some cleavage sites.  相似文献   

8.
Disorders in choline metabolism are related to disease conditions. We developed a stable-isotope dilution ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of acetylcholine (ACh), betaine, choline, and dimethylglycine (DMG). We used this method to measure concentrations of the analytes in plasma and urine in addition to other biological fluids after a protein precipitation by acetonitrile. The detection limits were between 0.35 nmol/L (for ACh in urine) and 0.34 μmol/L (for betaine in urine). ACh concentrations were not detectable in plasma. Intraassay and interassay coefficient of variation (CVs) were all <10.0% in biological fluids, except for DMG in cerebrospinal fluid (CV=12.44%). Mean recoveries in urine pool samples were between 99.2% and 103.9%. The urinary excretion of betaine, choline, and DMG was low, with approximately 50.0% higher excretion of choline in females compared to males. Median urinary excretion of ACh were 3.44 and 3.92 μmol/mol creatinine in males and females, respectively (p=0.689). Plasma betaine concentrations correlated significantly with urinary excretions of betaine (r=0.495, p=0.027) and choline (r=0.502, p=0.024) in females. Plasma choline concentrations correlated significantly with urinary excretion of ACh in males (r=0.419, p=0.041) and females (r=0.621, p=0.003). The new method for the simultaneous determination of ACh, betaine, choline, and DMG is sensitive, precise, and fast enough to be used in clinical investigations related to the methylation pathway.  相似文献   

9.
A new microflow injection analysis (microFIA) system on a chip coupled with chemiluminescence (CL) for the non-enzymatic determination of uric acid is described. The microFIA system produced by using two transparent poly(methylmethacrylate) (PMMA) chips measured 50 x 40 x 5 mm, the microchannels, etched by CO2 laser, were 200 microm wide and 100 microm deep, and the volume of the reaction area (RA) was about 1.2 microL. The injection pump, with accurate time control, monitored all reagents, including the sample. The uric acid was sensed by the chemiluminescence reaction between luminol and ferricyanide. The linear range of the uric acid concentration was 0.8-30 mg/L and the detection limit was 0.5 mg/L (S/N = 3). The relative standard deviation was 4.42% for 5 mg/L uric acid (n = 8). The proposed method has been successfully applied to the non-separation determination of uric acid in human serum and urine.  相似文献   

10.
8-hydroxy-2'-deoxyguanosine (8-OHdG) is a widely used biomarker of oxidative stress in research related to DNA, protein damage as well as lipid peroxidation. HPLC-MS/MS with electrospray ionization (ESI) and the use of isotopically labelled 8-OHdG as an internal standard allows a simple quantification of 8-OHdG in urine samples. HPLC separation utilized the peak cutting technique and a 1.5 mmx120 mm analytical anion exchange column. Novel method entails only minimal sample handling including the addition of a buffer and an internal standard followed by centrifugation before the samples are ready for analysis. The levels of 8-OHdG in human urine samples (n=246) varied from 0.16 to 16.48 microg/L and the corresponding creatinine-normalized values were ranged from 0.49 to 14.27 microg of 8-OHdG/g creatinine. The correlation between the developed HPLC-MS/MS method and the existing HPLC-EC method was good with an R2 value of 0.8707.  相似文献   

11.

Background

The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration.

Methods

During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples.

Results

Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples.

Conclusions

The UPCR in samples with low or high specific gravity is more likely to overestimate or underestimate actual daily urine protein amount, respectively, especially in a dilute urine sample with its creatinine below 38.8 mg/dL or a concentrated sample with its creatinine above 61.5 mg/dL. In particular, UPCR results should be interpreted with caution in cases that involve dilute urine samples because its overestimation may lead to an erroneous diagnosis of proteinuric renal disease or an incorrect staging of chronic kidney disease.  相似文献   

12.
Results of the simultaneous determination of the structurally different antibiotics cefazoline, cefotiame, cefuroxime, chloramphenicol, ciprofloxacin, ofloxacin, sulfamethoxazole and trimethoprim from environmental and biological monitoring using high-performance liquid chromatography with UV, single mass and tandem mass spectrometry were compared. For sample enrichment and clean-up a SPE method using bakerbond C18 cartridges was developed. Mean recovery rates were above 70%. Because of the complex urine matrix, only the wipe samples could be analyzed by UV-detection. However, UV-detection and single MS-detection are useful for control measurements after spillage, e.g. (LOD=1-2 ng/cm(2)). Samples from biological monitoring of occupational uptake should be analyzed by LC-MS/MS. The limits of detection (LOD) in urine ranged from 0.4 to 70 microg/L for LC-MS and 0.01 to 0.9 microg/L for LC-MS/MS detection. The limits of detection in wipe samples ranged from 0.003 to 0.13 ng/cm(2).  相似文献   

13.
Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi-enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on-line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).  相似文献   

14.
Dimethylamine [DMA, (CH(3))(2)NH)] is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Here we describe a GC-MS method for the accurate and rapid quantification of DMA in human urine. The method involves use of (CD(3))(2)NH as internal standard, simultaneous derivatization with pentafluorobenzoyl chloride and extraction in toluene, and selected-ion monitoring of m/z 239 for DMA and m/z 245 for (CD(3))(2)NH in the electron ionization mode. GC-MS analysis of urine samples from 10 healthy volunteers revealed a DMA concentration of 264+/-173 microM equivalent to 10.1+/-1.64 micromol/mmol creatinine. GC-tandem MS analysis of the same urine samples revealed an ADMA concentration of 27.3+/-15.3 microM corresponding to 1.35+/-1.2 micromol/mmol creatinine. In these volunteers, a positive correlation (R=0.83919, P=0.0024) was found between urinary DMA and ADMA, with the DMA/ADMA molar ratio being 10.8+/-6.2. Elevated excretion rates of DMA (52.9+/-18.5 micromol/mmol creatinine) and ADMA (3.85+/-1.65 micromol/mmol creatinine) were found by the method in 49 patients suffering from coronary artery disease, with the DMA/ADMA molar ratio also being elevated (16.8+/-12.8). In 12 patients suffering from end-stage liver disease, excretion rates of DMA (47.8+/-19.7 micromol/mmol creatinine) and ADMA (5.6+/-1.5 micromol/mmol creatinine) were found to be elevated, with the DMA/ADMA molar ratio (9.17+/-4.2) being insignificantly lower (P=0.46). Between urinary DMA and ADMA there was a positive correlation (R=0.6655, P<0.0001) in coronary artery disease, but no correlation (R=0.27339) was found in end-stage liver disease.  相似文献   

15.
F2-isoprostanes (F2-iPs) comprise four classes of isomers produced non-enzymatically by free radical attack on arachidonic acid, a component of the cell membrane. This paper describes a new method for the quantification of F2-isoprostanes in urine samples from thoroughly diagnosed Alzheimer's disease (AD) patients. The sample pretreatment consisted of liquid extraction of 900 microl urine with diethyl ether, its subsequent evaporation, and finally, reconstitution in 50 microl water. Of this, 20 microl was injected into a HPLC system with a 15 mm x 1 mm porous graphitic carbon column coupled to a triple quadrupole mass spectrometer running in negative electrospray ionization mode. The F2-isoprostanes were separated in 15 min using a linear solvent gradient comprising water, methanol, acetonitrile and ammonium hydroxide at a pH of 9.5. The average recovery obtained was approximately 75%. The limit of detection (3S/N) was calculated for iPF2alpha-III to be 0.7 pg injected on column, corresponding to 0.1 nM. The average level of iPF2alpha was 241 +/- 163 pg/mg creatinine in the urine samples from AD patients (average +/- standard deviation). The corresponding control values were 216 +/- 101 pg/mg creatinine, i.e. no statistically significant difference was noticed. No correlation pattern specific to Alzheimer's disease was revealed by principal component analysis of the isoprostane peaks obtained either. The results from this study support earlier findings that levels of peripheral isoprostanes are not increased in patients with Alzheimer's disease.  相似文献   

16.
This study developed an acid hydrolysis method instead of using enzyme extraction, equipped with column-switching system for the pretreatment of samples, in the determination of 1-hydroxypyrene in the urine from children and pyrene in airborne particulates. We collected both types of samples from areas near a petrochemical industry and rural areas as reference. Samples were first treated with acid hydrolysis and followed by solvent extraction prior to being injected into the separation system for the determination with high performance liquid chromatography and fluorescence. A column-switching system was on-line with a C18 separation column to remove matrix interference and obtain a stable baseline of the chromatogram. The eluent used to separate the 1-hydroxypyrene was 60% (v/v) aqueous acetonitrile solution. A fluorescence detector was used to monitor 1-hydroxypyrene at lambdaex = 348 nm and lambdaem = 388 nm, and pyrene at lambdaex = 331 nm and lambdaem = 390 nm. Both calibration graphs were linear with very good correlation coefficients (r > 0.999) and the detection limits were ca. 2pg (5ng/l). Results showed that there was a significant association between 1-hydroxypyrene levels in urine specimens and pyrene levels in airborne particulate samples (r = 0.68, P < 0.05). The average levels of pyrene in the particulates (0.18 versus 0.09ng/m3) and of 1-hydroxypyrene in urine specimens (155.9 versus 110.2ng/g creatinine) were higher for the petrochemical area than for the rural area. This method is stable and sensitive for measuring polycyclic aromatic hydrocarbons in environmental samples.  相似文献   

17.
Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate l-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(NG,NG-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the quantification of DMGV. D6-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2.  相似文献   

18.
Abstract

Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi‐enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on‐line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).  相似文献   

19.
Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate L-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of DMGV. D(6)-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2.  相似文献   

20.
Quantification of 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) has been suggested to be a reliable indicator of lipid peroxidation that may be related to in vivo free radical generation, oxidative damage, and antioxidant deficiency. We have developed a LC-MS/MS method to quantify 8-iso- PGF(2alpha) and its dinor metabolite, 2,3-dinor-8-iso-prostaglandin F(2alpha) (2,3-dinor-8-iso-PGF(2alpha)), in human urine samples. After an initial purification step using an automated C18 solid phase extraction procedure, the urine sample was injected directly into a liquid chromatography (LC) system and detected with tandem mass spectrometry. The detection limit of the assay was 9 pg for 8-iso-PGF(2alpha) and 3 pg for 2,3-dinor-8-iso-PGF(2alpha) with both inter- and intraday variations of less than 12%. The inaccuracies were less than 3% for both analytes at three different levels. The urinary excretion rate of 2,3-dinor-8-iso-PGF(2alpha) was higher than that of 8-iso-PGF(2alpha), and changed in proportion to the parent compound (R = 0.70, n = 60). Values obtained with this method showed good linear correlation to duplicate 8-iso-PGF(2alpha) measurements performed with GCMS (R = 0.97, n = 15). The mean excretion rates of 8-iso-PGF(2alpha) and 2,3-dinor-8-iso-PGF(2alpha) were significantly higher in smokers than in nonsmokers (0.53 +/- 0.37 vs. 0.25 +/- 0.15 microg/g creatinine, p = 0.002 for 8-iso-PGF(2alpha) and 8.9 +/- 3.8 vs. 4.6 +/- 2.6 microg/g creatinine, p = 0.003 for 2,3-dinor-8-iso-PGF(2alpha), respectively). The excellent accuracy, reproducibility, and high throughput of this method should permit it to be used in large clinical studies and standard clinical laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号