首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-protein coupled receptors (GPCRs) are seven transmembrane helical proteins involved in cell signaling and response. They are targets for many existing therapeutic agents, and numerous drug discovery efforts. Production of large quantities of these receptors for drug screening and structural biology remains challenging. To address this difficulty, we sought to express genes for several human GPCRs in Escherichia coli. For most of the receptors, expression was poor, and was not markedly improved even in strains designed to compensate for differences in codon bias between human and E. coli genes. However, the gene for human NK(1) receptor (hNK(1)R) was expressed in large quantities as inclusion bodies in E. coli. The inclusion bodies were not soluble in chemical denaturants such as guanidine chloride or urea, but were soluble in ionic detergents such as SDS, and the zwitterionic detergent fos-choline. Using immobilized metal affinity chromatography, we purified milligram amounts of hNK(1)R. Although inactive in ligand-binding assays, purified hNK(1)R in fos-choline micelles appeared to have a high content of alpha-helix, and was well-behaved in solution. Thus this protein is suitable for additional biophysical characterization and refolding studies.  相似文献   

2.
The sweet taste receptor is a heterodimeric receptor composed of the T1R2 and T1R3 subunits, while T1R1 and T1R3 assemble to form the umami taste receptor. T1R receptors belong to the family of class C G-protein coupled receptors (GPCRs). In addition to a transmembrane heptahelical domain, class C GPCRs have a large extracellular N-terminal domain (NTD), which is the primary ligand-binding site. The T1R2 and T1R1 subunits have been shown to be responsible for ligand binding, via their NTDs. However, little is known about the contribution of T1R3-NTD to receptor functions. To enable biophysical characterization, we overexpressed the human NTD of T1R3 (hT1R3-NTD) using Escherichia coli in the form of inclusion bodies. Using a fractional factorial screen coupled to a functional assay, conditions were determined for the refolding of hT1R3-NTD. Far-UV circular dichroism spectroscopic studies revealed that hT1R3-NTD was well refolded. Using size-exclusion chromatography, we found that the refolded protein behaves as a dimer. Ligand binding quantified by tryptophan fluorescence quenching and microcalorimetry showed that hT1R3-NTD is functional and capable of binding sucralose with an affinity in the millimolar range. This study also provides a strategy to produce functional hT1R3-NTD by heterologous expression in E. coli; this is a prerequisite for structural determination and functional analysis of ligand-binding regions of other class C GPCRs.  相似文献   

3.
Using a novel Escherichia coli system we have successfully overexpressed a region of the chicken progesterone receptor which encodes both the DNA- and hormone-binding domains. The expression system produces the truncated receptor fragment as an in-frame fusion with ubiquitin. This strategy greatly enhances both the solubility and stability of fusion proteins expressed in E. coli. Synthesis has been further improved by induction of the lambda PL promoter with nalidixic acid at low growth temperatures (less than or equal to 30 degrees C) rather than use of conventional heat induction protocols. We can produce 10 mg of receptor fragment/liter of cells using this system, and we estimate that at least 0.3 mg of this receptor material is biologically active, as assessed by DNA-binding and hormone-binding assays. Receptor produced in this manner is almost indistinguishable from authentic oviduct progesterone receptor using the criteria of hormone-binding specificity and affinity and binding to a progesterone response element. This expression system offers a cheap convenient method for the production of mg amounts of biologically active derivatives of progesterone receptor for biochemical studies.  相似文献   

4.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

5.
The type II restriction endonuclease, Bam HI, has been overexpressed in E. coli by cloning the Bam HI gene in frame with an E. coli Ribosome Binding Site (RBS) under the T7 promoter of an E. coli expression vector pRSET A. The expression level of Bam HI endonuclease using this construct was found to be higher than that reported of the overexpressing clone pAEK14. Our overexpressing clone, pAABRw in BL21 cells in presence of Bam HI methylase in pMAP6 following induction with IPTG yields about 9.2 x 10(6) units per gram wet cell paste. In vivo activity of the recombinant endonuclease could be confirmed by the SOS induction assay in JH139 cells even in the absence of T7 polymerase and cognate Bam HI methylase because of leaky expression in E. coli. This provides an alternate way to screen the active endonuclease and its variants.  相似文献   

6.
7.
High-level expression of mammalian G-protein-coupled receptors (GPCRs) is a necessary step toward biophysical characterization and high-resolution structure determination. Even though many heterologous expression systems have been used to express mammalian GPCRs at high levels, many receptors are improperly trafficked or are inactive in these systems. En route to engineering a robust microbial host for GPCR expression, we have investigated the expression of 12 GPCRs in the yeast Saccharomyces cerevisiae, where all receptors are expressed at the mg/L scale. However, only the human adenosine A2a (hA2aR) receptor is active for ligand-binding and located primarily at the plasma membrane, whereas other tested GPCRs are mainly retained within the cell. Selective receptors associate with BiP, an ER-resident chaperone, and activated the unfolded protein response (UPR) pathway, which suggests that a pool of receptors may be folded incorrectly. Leader sequence cleavage of the expressed receptors was complete for the hA2aR, as expected, and partially cleaved for hA2bR, hCCR5R, and hD2LR. Ligand-binding assays conducted on the adenosine family (hA1R, hA2aR, hA2bR, and hA3R) of receptors show that hA2aR and hA2bR, the only adenosine receptors that demonstrate leader sequence processing, display activity. Taken together, these studies point to translocation as a critical limiting step in the production of active mammalian GPCRs in S. cerevisiae.  相似文献   

8.
Tobacco etch virus NIa proteinase (TEV protease) is an important tool for the removal of fusion tags from recombinant proteins. Production of TEV protease in Escherichia coli has been hampered by insolubility and addressed by many different strategies. However, the best previous results and newer approaches for protein expression have not been combined to test whether further improvements are possible. Here, we use a quantitative, high-throughput assay for TEV protease activity in cell lysates to evaluate the efficacy of combining several previous modifications with new expression hosts and induction methods. Small-scale screening, purification and mass spectral analysis showed that TEV protease with a C-terminal poly-Arg tag was proteolysed in the cell to remove four of the five arginine residues. The truncated form was active and soluble but in contrast, the tagged version was also active but considerably less soluble. An engineered TEV protease lacking the C-terminal residues 238-242 was then used for further expression optimization. From this work, expression of TEV protease at high levels and with high solubility was obtained by using auto-induction medium at 37 degrees C. In combination with the expression work, an automated two-step purification protocol was developed that yielded His-tagged TEV protease with >99% purity, high catalytic activity and purified yields of approximately 400 mg/L of expression culture (approximately 15 mg pure TEV protease per gram of E. coli cell paste). Methods for producing glutathione-S-transferase-tagged TEV with similar yields (approximately 12 mg pure protease fusion per gram of E. coli cell paste) are also reported.  相似文献   

9.
G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of membrane proteins. Obtaining high yields of GPCRs remains one of the major factors limiting a detailed understanding of their structure and function. Photoreceptor cells (PRCs) contain extensive stacks of specialized membranes where high levels of rhodopsins are naturally present, which makes them ideal for the overexpression of GPCRs. We have generated transgenic flies expressing a number of GPCRs in the PRCs. Drosophila melanogaster metabotropic glutamate receptor (DmGluRA) expressed by this novel strategy was purified to homogeneity, giving at least 3-fold higher yields than conventional baculovirus expression systems due to the higher membrane content of the PRCs. Pure DmGluRA was then reconstituted into liposomes of varying composition. Interestingly, glutamate binding was strictly dependent on the presence of ergosterol.  相似文献   

10.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.  相似文献   

11.
Low yields of recombinant expression represent a major barrier to the physical characterization of membrane proteins. Here, we have identified genes that globally enhance the production of properly folded G protein-coupled receptors (GPCRs) in Escherichia coli. Libraries of bacterial chromosomal fragments were screened using two separate systems that monitor: (i) elevated fluorescence conferred by enhanced expression of GPCR-GFP fusions and (ii) increased binding of fluorescent ligand in cells producing more active receptor. Three multi-copy hits were isolated by both methods: nagD, encoding the ribonucleotide phosphatase NagD; a fragment of nlpD, encoding a truncation of the predicted lipoprotein NlpD, and the three-gene cluster ptsN-yhbJ-npr, encoding three proteins of the nitrogen phosphotransferase system. Expression of these genes resulted in a 3- to 10-fold increase in the yields of different mammalian GPCRs. Our data is consistent with the hypothesis that the expression of these genes may serve to maintain the integrity of the bacterial periplasm and to provide a favorable environment for proper membrane protein folding, possibly by inducing a fine-tuned stress response and/or via modifying the composition of the bacterial cell envelope.  相似文献   

12.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   

13.
G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms. Currently, the difficulty of preparing functional GPCRs and the lack of efficient antibody screening methods are the most challenging steps in the discovery of antibodies targeting GPCRs. In this study, we developed a powerful platform that facilitates isolating GPCR-specific antibodies by obviating difficulties in GPCR preparation. The strategies include (i) conjugation of the P9 peptide, an envelope protein of Pseudomonas phi6, to the N-terminus of GPCRs to improve the expression level of the GPCRs in Escherichia coli, (ii) stabilization of the GPCRs in their active forms with amphiphilic poly-γ-glutamate (APG) to shield the seven hydrophobic transmembrane domains, and (iii) further limiting the size of the APG complex to improve the chance to isolate antibodies targeting the proteins-of-interest. Capitalizing on the above strategies, we could prepare GPCR proteins in their active forms as facile as other general-soluble antigen proteins. Furthermore, this protocol was validated to be successful in discovering three individual GPCR-specific antibodies targeting glucagon-like peptide-1 receptor, C-X-C chemokine receptor type 4, and prostaglandin E2 receptor 4 in this study.  相似文献   

14.
We have developed a mammalian expression system suitable for the production of enzymatically biotinylated integral membrane proteins. The key feature of this system is the doxycycline (dox)-regulated co-expression of a secreted variant of Escherichia coli biotin ligase (BirA) and a target protein with a 13-residue biotin acceptor peptide (BioTag) appended to its extracellular domain. Here we describe the expression and functional analysis of three G-protein coupled receptors (GPCRs): protease-activated receptors (PARs) 1 and 2, and the platelet ADP receptor, P2Y(12). Clonal Chinese hamster ovary (CHO) Tet-On cell lines that express biotinylated GPCRs were rapidly isolated by fluorescence-activated cell sorting following streptavidin-FITC staining, thereby circumventing the need for manual colony picking. Analysis by Western blotting with streptavidin-HRP following endoglycosidase treatment revealed that all three GPCRs undergo N-linked glycosylation. The expression of biotinylated GPCRs on the cell surface was regulated by the concentration of dox in the medium, reaching a maximum at approximately 1 microg/mL dox. Similarly, the extent of GPCR biotinylation was dependent on biotin concentration, with maximum and complete biotinylation achieved upon supplementation with 50 microM biotin. Biotinylated PAR1 and PAR2 were readily and specifically cleaved on the surface of intact cells by their cognate proteases, and were capable of transducing extracellular stimuli, resulting in the downstream phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, P2Y(12) mediated agonist-induced ERK phosphorylation only when it was expressed at low levels on the cell surface, highlighting the utility of regulated expression for the production of functionally active GPCRs in mammalian cells.  相似文献   

15.
A computational protocol has been devised to relate 7TM receptor proteins (GPCRs) with respect to physicochemical features of the core ligand-binding site as defined from the crystal structure of bovine rhodopsin. The identification of such receptors that already are associated with ligand information (e.g., small molecule ligands with mutagenesis or SAR data) is used to support structure-guided drug design of novel ligands. A case targeting the newly identified prostaglandin D2 receptor CRTH2 serves as a primary example to illustrate the procedure.  相似文献   

16.
The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (approximately 4mg/L of culture) of functional human adenosine A(2)a receptor fused to a green fluorescent protein (A(2)aR-GFP) from Saccharomyces cerevisiae. In this work, we re-engineered A(2)aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A(2)aR and A(2)aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A(2)aR-GFP-His(10). One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-beta-d-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A(2)aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A(2)a-His(10) receptor was purified in quantities of 6+/-2mg/L of culture, with ligand-binding yields of 1mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A(2)aR yet achieved from any heterologous expression system.  相似文献   

17.
Genomic clones encoding the mature pokeweed antiviral protein with or without C-terminal extrapeptide (PAPMC and PAPM), which have been reported to be highly toxic to E. coli cells, were inserted into the expression vector pMAL-p2. The recombinant PAPs (rPAPMC and rPAPM) were successfully expressed in E. coli at 25 degrees C, being exported to the periplasm as soluble fusions with maltose-binding protein (MBP). The rPAPs were cleaved from MBP by treatment with factor Xa and subsequently purified with final yields of 4.0 mg/liter (rPAPMC) and 5.5 mg/liter (rPAPM). rPAPM was resistant to protease digestion, but the C-terminal extrapeptide appeared to be susceptible and was partially digested by some protease in E. coli. Both rPAPMC and rPAPM were as active as the native PAPM from pokeweed leaves in depurinating rat liver and E. coli ribosomes, while the activities of rPAPMC on both ribosomes were decreased at least 60-fold by fusion with MBP.  相似文献   

18.
19.
The two best known calpains, micro- and m-calpain, are Ca(2+)-dependent cysteine proteases found in all mammalian tissues. They are probably involved in many Ca(2+)-linked signal pathways, although the details are not yet clear. The enzymes are heterodimers of a specific large subunit (micro-80k or m-80k) and a common small subunit (28k). Recombinant calpains have been obtained by co-expression of large and small subunits in Escherichia coli and in Sf9 cells, with variable success. Expression with the 28k subunit is very low, but is much higher with a C-terminal 21k fragment of this subunit. Rat m-calpain (m-80k/21k) is well expressed in E. coli but mouse m-calpain (m-80k/21k) is poorly expressed, even though the amino acid sequences of rat-m-80k and mouse-m-80k are 92% identical. It had also been reported that human m-calpain could be expressed in Sf9 cells but not in E. coli. To investigate these differences, hybrid rat/mouse and rat/human m-calpains were cloned and expressed in E. coli. It was shown that Ile-6 and Pro-127, which are specific to the mouse m-80k sequence, caused poor expression. High expression of human m-calpain in E. coli could be achieved by providing the correct Shine-Dalgarno ribosome binding site. The results provide a simple method to obtain approximately 10mg amounts of human m-calpain and a slightly modified mouse m-calpain. Expression of m-80k-EGFP fusions was also studied, both in E. coli and in mammalian cells, varying both the small subunit and the promoters. m-80k-EGFP alone was not active, but with 21k or 28k subunits was active in both cell types. The EGFP domain was partially cleaved during expression, releasing an active m-80k/21k calpain.  相似文献   

20.
In Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E. coli S30 extract, with G protein coupled receptors (GPCRs) as the target integral membrane proteins. In this system, the thioredoxin-fusion vector induced high protein expression levels as compared with the non-fusion and hexa-histidine-tagged proteins. Two detergents, Brij35 and digitonin, effectively solubilized the produced GPCRs, with little or no effect on the protein yields. The synthesized proteins were detected by Coomassie brilliant blue staining within 1h of reaction initiation, and were easily reconstituted within phospholipid vesicles. Surprisingly, the unpurified, reconstituted thioredoxin-fused receptor proteins had functional activity, in that a specific affinity binding value of an antagonist was obtained for the receptor. This cell-free translation system (about 1mg/ml of reaction volume for 6-8 h) has biophysical and biochemical advantages for the synthesis of integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号