首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.  相似文献   

2.
3.
An intensive linkage map of the yellow fever mosquito, Aedes aegypti, was constructed using single-strand conformation polymorphism (SSCP) analysis of cDNA markers to identify single nucleotide polymorphisms (SNPs). A total of 94 A. aegypti cDNAs were downloaded from GenBank and primers were designed to amplify fragments <500 bp in size. These primer pairs amplified 94 loci, 57 (61%) of which segregated in a single F(1) intercross family among 83 F(2) progeny. This allowed us to produce a dense linkage map of one marker every 2 cM distributed over a total length of 134 cM. Many A. aegypti cDNAs were highly similar to genes in the Drosophila melanogaster genome project. Comparative linkage analysis revealed areas of synteny between the two species. SNP polymorphisms are abundant in A. aegypti genes and should prove useful in both population genetics and mapping studies.  相似文献   

4.
Bacillus thuringiensis subsp. medellin produces numerous proteins among which 94 kDa known as Cry11Bb, has mosquitocidal activity. The mode of action of the Cry11 proteins has been described as similar to those of the Cry1 toxins, nevertheless, the mechanism of action is still not clear. In this study we investigated the in vivo binding of the Cry11Bb toxin to the midgut of the insect species Anopheles albimanus, Aedes aegypti, and Culex quinquefasciatus by immunohistochemical analysis. Spodoptera frugiperda was included as negative control. The Cry11Bb protein was detected on the apical microvilli of the midgut epithelial cells, mostly on the posterior midgut and gastric caeca of the three mosquito species. Additionally, the toxin was detected in the Malpighian tubules of An. albimanus, Ae. aegypti, Cx. quinquefasciatus, and in the basal membrane of the epithelial cells of Ae. aegypti midgut. No toxin accumulation was observed in the peritrophic membrane of any of the mosquito species studied. These results confirm that the primary site of action of the Cry11 toxins is the apical membrane of the midgut epithelial cells of mosquito larvae.  相似文献   

5.
I Morlais  D W Severson 《Genetics》2001,158(3):1125-1136
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.  相似文献   

6.
7.
8.
The identification and cloning of genes conferring mosquito refractoriness to the malaria parasite is critical for understanding malaria transmission mechanisms and holds great promise for developing novel approaches to malaria control. The mosquito midgut is the first major site of interaction between the parasite and the mosquito. Failure of the parasite to negotiate this environment can be a barrier for development and is likely the main cause of mosquito refractoriness. This paper reports a study on Aedes aegypti midgut expressed sequence tag (EST) identification and the determination of genes differentially expressed in mosquito populations susceptible and refractory to the avian malaria parasite Plasmodium gallinaceum. We sequenced a total of 1200 cDNA clones and obtained 1183 high-quality mosquito midgut ESTs that were computationally collapsed into 105 contigs and 251 singlets. All 1200 midgut cDNA clones, together with an additional 102 genetically or physically mapped Ae. aegypti clones, were spotted on single arrays with 12 replicates. Of those interrogated microarray elements, 28 (2.3%) were differentially expressed between the susceptible and refractory mosquito populations. Twenty-seven elements showed at least a two-fold increase in expression in the susceptible population level relative to the refractory population and one clone showed reduced expression. Sequence analysis of these differentially expressed genes revealed that 10 showed no significant similarity to any known genes, 6 clones had matches with unannotated genes of Anopheles gambiae, and 12 clones exhibited significant similarity to known genes. Real-time quantitative RT-PCR of selected clones confirmed the mRNA expression profiles from the microarray analysis.  相似文献   

9.
Apoptosis has been extensively studied in Drosophila by both biochemical and genetic approaches, but there is a lack of knowledge about the mechanisms of apoptosis regulation in other insects. In mosquitoes, apoptosis occurs during Plasmodium and arbovirus infection in the midgut, suggesting that apoptosis plays a role in mosquito innate immunity. We searched the Aedes aegypti genome for apoptosis-related genes using Drosophila and Anopheles gambiae protein sequences as queries. In this study we have identified eleven caspases, three inhibitor of apoptosis (IAP) proteins, a previously unreported IAP antagonist, and orthologs of Drosophila Ark, Dnr1, and BG4 (also called dFadd). While most of these genes have been previously annotated, we have improved the annotation of several of them, and we also report the discovery of four previously unannotated apoptosis-related genes. We examined the developmental expression profile of these genes in Ae. aegypti larvae, pupae and adults, and we also studied the function of a novel IAP antagonist, IMP. Expression of IMP in mosquito cells caused apoptosis, indicating that it is a functional pro-death protein. Further characterization of these genes will help elucidate the molecular mechanisms of apoptosis regulation in Ae. aegypti.  相似文献   

10.
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.  相似文献   

11.
12.
The gustatory receptor (Gr) protein family contains most of the diversity in the insect chemoreceptor superfamily, including within it not only taste receptors but select olfactory receptors as well. Manual annotation of the Gr family in the genome sequence of the yellow-fever mosquito, Aedes aegypti, yielded a total of 114 potential proteins encoded by 79 genes. In the sequenced genome, 23 of these genes and protein isoforms are pseudogenic, leaving 91 putatively functional Grs. Comparison with our previously published set of 76 Grs encoded by 52 genes in the distantly related Anopheles gambiae mosquito revealed 13 new AgGrs encoded by 8 genes. Phylogenetic analysis reveals the conservation of carbon dioxide, sugar, and several orphan receptors in these 2 mosquitoes and Drosophila flies. On the other hand, most of these Grs are unique to mosquitoes and many are specific to the Aedes or Anopheles lineages, indicating their involvement in mosquito-specific aspects of both gustatory and olfactory perception. In particular, most instances of alternative splicing in orthologous loci appear to have evolved after the culicine-anopheline split +/-150 million years ago.  相似文献   

13.
Detection and localization of antibody ingested with a mosquito bloodmeal   总被引:1,自引:0,他引:1  
Mouse immunoglobulins were found to persist in Aedes aegypti (L.) mosquito bloodmeals for 2-3 days after ingestion. Immunoenzyme labelling revealed mouse antibody specifically bound to the mosquito midgut epithelium after ingestion; immunogold labelling of thin sections revealed mouse antibody within the cytoplasm of the microvilli on the midgut epithelium. Ingested mouse antibody was not conclusively demonstrated bound to tissues outside the gut, though antibody was detected in mosquito haemolymph using a sensitive ELISA test. Possible mechanisms by which antibody may cross mosquito gut barriers and actions that in vivo antibody:antigen reactions may have on these bloodfed insects are discussed.  相似文献   

14.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

15.
Wang H  Gort T  Boyle DL  Clem RJ 《Journal of virology》2012,86(12):6546-6554
Improved control of vector-borne diseases requires an understanding of the molecular factors that determine vector competence. Apoptosis has been shown to play a role in defense against viruses in insects and mammals. Although some observations suggest a correlation between apoptosis and resistance to arboviruses in mosquitoes, there is no direct evidence tying apoptosis to arbovirus vector competence. To determine whether apoptosis can influence arbovirus replication in mosquitoes, we manipulated apoptosis in Aedes aegypti mosquitoes by silencing the expression of genes that either positively or negatively regulate apoptosis. Silencing of the A. aegypti anti-apoptotic gene iap1 (Aeiap1) caused apoptosis in midgut epithelium, alterations in midgut morphology, and 60 to 70% mosquito mortality. Mortality induced by Aeiap1 silencing was rescued by cosilencing the initiator caspase gene Aedronc, indicating that the mortality was due to apoptosis. When mosquitoes which had been injected with Aeiap1 double-stranded RNA (dsRNA) were orally infected with Sindbis virus (SINV), increased midgut infection and virus dissemination to other organs were observed. This increase in virus infection may have been due to the effects of widespread apoptosis on infection barriers or innate immunity. In contrast, silencing the expression of Aedronc, which would be expected to inhibit apoptosis, reduced SINV midgut infection and virus dissemination. Thus, our data suggest that some level of caspase activity and/or apoptosis may be necessary for efficient virus replication and dissemination in mosquitoes. This is the first study to directly test the roles of apoptosis and caspases in determining mosquito vector competence for arboviruses.  相似文献   

16.
Five short interspersed repetitive elements (SINEs) were found fortuitously in the introns of a steroid hormone receptor AaHR3-2 gene of the yellow fever mosquito, Aedes aegypti, constituting a novel family of tRNA-related SINEs named Feilai. In addition, nine other Feilai elements were found in currently available sequences in Ae. aegypti, six of which were also near genes. Approximately 5.9 x 10(4) copies of Feilai were present in Ae. aegypti, equivalent to 2% of the entire genome. An additional 35 Feilai elements were isolated from a genomic library. Of the total 49 Feilai elements, 20 were full-length. Sequence comparisons and phylogenetic analyses of the full-length elements strongly suggest that there are at least two subfamilies within the Feilai family. There is a high degree of conservation within the two subfamilies. However, sequence divergence between the subfamilies, along with the presence of highly degenerate Feilai elements, suggests that Feilai is likely a diverse family of SINEs that has existed in Ae. aegypti for a long time. Many Feilai elements were closely associated with other transposons, especially with fragments of non-LTR retrotransposons and miniature inverted-repeat transposable elements. The 500-bp sequences immediately flanking a Feilai element were highly A + T-rich, which is consistent with the fact that no Feilai has been found in the coding regions of genes. It is likely that the highly reiterated and interspersed Feilai elements are partially responsible for the pattern of short-period interspersion of the Ae. aegypti genome. The evolutionary relationship between Feilai and the Ae. aegypti genome is likely complex.  相似文献   

17.
Many vertebrate and insect viruses possess antiapoptotic genes that are required for their infectivity. This led to the hypothesis that apoptosis is an innate immunoresponse important for limiting virus infections. The role of apoptosis may be especially important in insect antiviral defense because of the lack of adaptive immunity. However, the cellular mechanism that elicits apoptosis in response to viral infection in insects has not been determined. Using an in vivo infection system with the mosquito baculovirus CuniNPV (Culex nigripalpus nucleopolyhedrovirus), we demonstrated that michelob_x (mx), the mosquito ortholog of Drosophila proapoptotic gene reaper, is specifically induced in larval midgut cells following viral infection. Interestingly, the dynamics of mx induction corresponds with the outcome of the infection. In the permissive mosquito C. quinquefasciatus, a slow induction of mx failed to induce prompt apoptosis, and the infected cells eventually undergo necrosis with heavy loads of encapsulated viruses. In contrast, in the refractory mosquito Aedes aegypti, a rapid induction of mx within 30 min p.i. is followed by apoptosis within 2-6 h p.i., suggesting a possible role for apoptosis in limiting viral infection. When the execution of apoptosis was delayed by caspase inhibitors, viral gene expression became detectable in the A. aegypti larvae.  相似文献   

18.
Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.  相似文献   

19.
Two novel crystal protein genes from a highly mosquitocidal Bacillus thuringiensis serovar medellin strain were cloned and sequenced. The corresponding proteins, Cry29A and Cry30A, were nontoxic when tested individually against the mosquito species bioassayed (Aedes aegypti, Culex pipiens and Anopheles stephensi). However, Cry29A synergized the toxicity of Cry11Bb against Aedes aegypti by a four-fold factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号