首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controversy as to whether MBL can utilize C1r and C1s or, inversely, whether C1q can utilize MASP-1 and 2. Serum deficient in C1r produced no complement activation in IgG-coated microwells, whereas activation was seen in mannan-coated microwells. In serum, C1r and C1s were found to be associated only with C1q, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated with MBL, whereas in the presence of EDTA most of these components formed smaller complexes. Over 95% of the total MASPs and MAp19 found in serum are not complexed with MBL.  相似文献   

2.
The complement system plays an important role in innate immunity. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme. It has been suggested that MASP-2 is responsible for the activation of C4. Other serine proteases (MASP-1 and MASP-3) are also associated with MBL or ficolins; however, their functions are still controversial. In this study, a MASP-1- and MASP-3-deficient mouse model (MASP1/3(-/-)) was generated by a gene targeting strategy to investigate the roles of MASP-1 and MASP-3 in the lectin pathway. Serum derived from MASP1/3(-/-) mice showed significantly lower activity of both C4 and C3 deposition on mannan-agarose, and this low activity was restored by the addition of recombinant MASP-1. MASP-1/3-deficient serum showed a significant delay for activation of MASP-2 compared with normal serum. Reconstitution of recombinant MASP-1 in MASP-1/3-deficient serum was able to promote the activation of MASP-2. From these results, we propose that MASP-1 contributes to the activation of the lectin pathway, probably through the activation of MASP-2.  相似文献   

3.
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system in which binding of anti-aquaporin-4 (AQP4) autoantibodies (NMO-IgG) to astrocytes causes complement-dependent cytotoxicity (CDC) and inflammation resulting in oligodendrocyte and neuronal injury. There is compelling evidence for a central role of complement in NMO pathogenesis. Here, we evaluated the potential of C1-esterase inhibitor (C1-inh) for complement-targeted therapy of NMO. C1-inh is an anti-inflammatory plasma protein with serine protease inhibition activity that has a broad range of biological activities on the contact (kallikrein), coagulation, fibrinolytic and complement systems. C1-inh is approved for therapy of hereditary angioedema (HAE) and has been studied in a small safety trial in acute NMO relapses (NCT 01759602). In vitro assays of NMO-IgG-dependent CDC showed C1-inh inhibition of human and rat complement, but with predicted minimal complement inhibition activity at a dose of 2000 units in humans. Inhibition of complement by C1-inh was potentiated by ∼10-fold by polysulfated macromolecules including heparin and dextran sulfate. In rats, intravenous C1-inh at a dose 30-fold greater than that approved to treat HAE inhibited serum complement activity by <5%, even when supplemented with heparin. Also, high-dose C1-inh did not reduce pathology in a rat model of NMO produced by intracerebral injection of NMO-IgG. Therefore, although C1r and C1s are targets of C1-inh, our in vitro data with human serum and in vivo data in rats suggest that the complement inhibition activity of C1-inh in serum is too low to confer clinical benefit in NMO.  相似文献   

4.
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.  相似文献   

5.
Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.  相似文献   

6.
The mannan-binding lectin (MBL) activation pathway of complement plays an important role in the innate immune defense against pathogenic microorganisms. In human serum, two MBL-associated serine proteases (MASP-1, MASP-2) and MBL-associated protein 19 (MAp19) were found to be associated with MBL. With a view to investigate the interaction properties of these proteins, human MASP-1, MASP-2, MAp19, as well as the N-terminal complement subcomponents C1r/C1s, Uegf, and bone morphogenetic protein-1-epidermal growth factor (CUB-EGF) segments of MASP-1 and MASP-2, were expressed in insect or human kidney cells, and MBL was isolated from human serum. Sedimentation velocity analysis indicated that the MASP-1 and MASP-2 CUB-EGF segments and the homologous protein MAp19 all behaved as homodimers (2.8-3.2 S) in the presence of Ca(2+). Although the latter two dimers were not dissociated by EDTA, their physical properties were affected. In contrast, the MASP-1 CUB-EGF homodimer was not sensitive to EDTA. The three proteins and full-length MASP-1 and MASP-2 showed no interaction with each other as judged by gel filtration and surface plasmon resonance spectroscopy. Using the latter technique, MASP-1, MASP-2, their CUB-EGF segments, and MAp19 were each shown to bind to immobilized MBL, with K:(D) values of 0.8 nM (MASP-2), 1.4 nM (MASP-1), 13.0 nM (MAp19 and MASP-2 CUB-EGF), and 25.7 nM (MASP-1 CUB-EGF). The binding was Ca(2+)-dependent and fully sensitive to EDTA in all cases. These data indicate that MASP-1, MASP-2, and MAp19 each associate as homodimers, and individually form Ca(2+)-dependent complexes with MBL through the CUB-EGF pair of each protein. This suggests that distinct MBL/MASP complexes may be involved in the activation or regulation of the MBL pathway.  相似文献   

7.
C1s and mannan-binding lectin-associated serine protease-2 (MASP-2) are the proteases that trigger the classical and lectin pathways of complement, respectively. They have identical modular architectures and cleave the same substrates, C2 and C4, but show markedly different efficiencies toward C4. Multisite-directed mutagenesis was used to engineer hybrid C1s/MASP-2 molecules where either the complement control protein (CCP) modules or the serine protease (SP) domain of C1s were swapped for their MASP-2 counterparts. The resulting chimeras (C1s(MASP-2 CCP1/2) and C1s(MASP-2 SP), respectively) were expressed and characterized chemically and functionally. Whereas C1s(MASP-2 SP) was recovered as an active enzyme, C1s(MASP-2 CCP1/2) was produced in a proenzyme form and was susceptible to activation by C1r, indicating that the activation properties of the chimeras were dictated by the nature of their SP domain. Similarly, each activated chimera had an esterolytic activity characteristic of its own SP domain and cleaved C2 with an efficiency comparable with that of their parent C1s and MASP-2 proteases. Both chimeras cleaved C4, but whereas C1s(MASP-2 SP) and C1s had Km values in the micromolar range, C1s(MASP-2 CCP1/2) and MASP-2 had Km values in the nanomolar range, resulting in 21-27-fold higher kcat/Km ratios. Thus, the higher C4 cleavage efficiency of MASP-2 arises from a higher substrate recognition efficacy of its CCP modules. Remarkably, C1s(MASP-2 CCP1/2) retained C1s ability to associate with C1r and C1q to form a pseudo-C1 complex and to undergo activation within this complex, indicating that the C1s-CCP modules have no direct implication in either function.  相似文献   

8.
Mannan-binding lectin (MBL)-associated serine proteases-1 and 2 (MASP-1 and MASP-2) are homologous modular proteases that each interact with MBL, an oligomeric serum lectin involved in innate immunity. To precisely determine their substrate specificity, human MASP-1 and MASP-2, and fragments from their catalytic regions were expressed using a baculovirus/insect cells system. Recombinant MASP-2 displayed a rather wide, C1s-like esterolytic activity, and specifically cleaved complement proteins C2 and C4, with relative efficiencies 3- and 23-fold higher, respectively, than human C1s. MASP-2 also showed very weak C3 cleaving activity. Recombinant MASP-1 had a lower and more restricted esterolytic activity. It showed marginal activity toward C2 and C3, and no activity on C4. The enzymic activity of both MASP-1 and MASP-2 was specifically titrated by C1 inhibitor, and abolished at a 1:1 C1 inhibitor:protease ratio. Taken together with previous findings, these and other data strongly support the hypothesis that MASP-2 is the protease that, in association with MBL, triggers complement activation via the MBL pathway, through combined self-activation and proteolytic properties devoted to C1r and C1s in the C1 complex. In view of the very low activity of MASP-1 on C3 and C2, our data raise questions about the implication of this protease in complement activation.  相似文献   

9.
Activation of component C3 is central to the pathways of complement and leads directly to neutralization of pathogens and stimulation of adaptive immune responses. The convertases that catalyze this reaction assemble from fragments of complement components via multistep reactions. In the lectin pathway, mannose-binding lectin (MBL) and ficolins bind to pathogens and activate MBL-associated serine protease-2 (MASP-2). MASP-2 cleaves C4 releasing C4a and generating C4b, which attaches covalently to the pathogen surface upon exposure of its reactive thioester. C2 binds to C4b and is also cleaved by MASP-2 to form the C3 convertase (C4b2a). To understand how this complex process is coordinated, we have analyzed the interactions between MASP-2, C4, C2, and their activation fragments and have compared MASP-2-catalyzed cleavage of C4b2 and C2. The data show that C2 binds tightly to C4b but not to C4, implying that C4 and C2 do not circulate as preformed complexes but that C2 is recruited only after prior activation of C4. Following cleavage of C4, C4b still binds to MASP-2 (KD approximately 0.6 microM) and dissociates relatively slowly (koff approximately 0.06 s-1) compared with the half-life of the thioester (相似文献   

10.
Mannose (or mannan)-binding lectin (MBL) is an oligomeric serum lectin that plays a role in innate immunity by activating the complement system. In human, two types of MBL-associated serine protease (MASP-1 and MASP-2) and a truncated protein of MASP-2 (small MBL-associated protein; sMAP or MAp19) are complexed with MBL. To clarify the proteolytic activities of MASP-1 and MASP-2 against C4, C2, and C3, we isolated these two types of MASP in activated forms from human serum by sequential affinity chromatography. On an anti-MASP-1 column, MASP-2 passed through the column in the presence of EDTA and high salt concentration, whereas MASP-1 was retained. Isolated MASP-1 and MASP-2 exhibited proteolytic activities against C3 and C4, respectively. C2 was activated by both MASPs. C1 inhibitor (C1 INH), an inhibitor for C1r and C1s, formed equimolar complexes with MASP-1 and MASP-2 and inhibited their proteolytic activities.  相似文献   

11.
Mannan-binding lectin-associated serine protease (SP) (MASP)-1 and MASP-2 are modular SP and form complexes with mannan-binding lectin, the recognition molecule of the lectin pathway of the complement system. To characterize the enzymatic properties of these proteases we expressed their catalytic region, the C-terminal three domains, in Escherichia coli. Both enzymes autoactivated and cleaved synthetic oligopeptide substrates. In a competing oligopeptide substrate library assay, MASP-1 showed extreme Arg selectivity, whereas MASP-2 exhibited a less restricted, trypsin-like specificity. The enzymatic assays with complement components showed that cleavage of intact C3 by MASP-1 and MASP-2 was detectable, but was only approximately 0.1% of the previously reported efficiency of C3bBb, the alternative pathway C3-convertase. Both enzymes cleaved C3i 10- to 20-fold faster, but still at only approximately 1% of the efficiency of MASP-2 cleavage of C2. We believe that C3 is not the natural substrate of either enzyme. MASP-2 cleaved C2 and C4 at high rates. To determine the role of the individual domains in the catalytic region of MASP-2, the second complement control protein module together with the SP module and the SP module were also expressed and characterized. We demonstrated that the SP domain alone can autoactivate and cleave C2 as efficiently as the entire catalytic region, while the second complement control protein module is necessary for efficient C4 cleavage. This behavior strongly resembles C1s. Each MASP-1 and MASP-2 fragment reacted with C1-inhibitor, which completely blocked the enzymatic action of the enzymes. Nevertheless, relative rates of reaction with alpha-2-macroglobulin and C1-inhibitor suggest that alpha-2-macroglobulin may be a significant physiological inhibitor of MASP-1.  相似文献   

12.
Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process.  相似文献   

13.
A family of serine proteases mediates the proteolytic cascades of several defense mechanisms in vertebrates, such as the complement system, blood coagulation and fibrinolysis. These proteases usually form large complexes with other glycoproteins. Their common features are their modular structures and restricted substrate specificities. The lectin pathway of complement, where mannose-binding lectin (MBL) recognizes the carbohydrate structures on pathogens, is activated by mannose-binding lectin-associated serine protease-2 (MASP-2). We present the 2.25A resolution structure of the catalytic fragment of MASP-2 encompassing the second complement control protein module (CCP2) and the serine protease (SP) domain. The CCP2 module stabilizes the structure of the SP domain as demonstrated by differential scanning calorimetry measurements. The asymmetric unit contains two molecules with different CCP-SP domain orientations, reflecting increased modular flexibility at the CCP2/SP joint. This flexibility may partly explain the ability of the MASP-2 dimer to perform all of its functions alone, whereas the same functions are mediated by the much larger C1r2-C1s2 tetramer in the C1 complex of the classical pathway. The main scaffold of the MASP-2 SP domain is chymotrypsin-like. Eight surface loops determine the S1 and other subsite specificities. Surprisingly, some surface loops of MASP-2, e.g. loop 1 and loop 2, which form the S1 pocket are similar to those of trypsin, and show significant differences if compared with those of C1s, indicating that the nearly identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interactions.  相似文献   

14.
Hereditary angioedema (HAE) is a potentially life-threatening disease caused by mutations in the gene encoding the serine protease inhibitor (serpin) C1 inhibitor (C1-inh). The mutations cause decreased functional plasma levels of C1-inh, which triggers unpredictable recurrent edema attacks. Subjects suffering from HAE have been classified in type I patients with decreased functional and antigenic levels of C1-inh, and type II patients with decreased functional but normal antigenic C1-inh levels. However, a few reports have demonstrated that some mutations cause C1-inh polymerization in vitro, and it is speculated that C1-inh polymers may exist in patient plasma, challenging the current classification of HAE patients. To investigate the presence of C1-inh polymers in patient plasma samples, we developed an immunological method, where monoclonal antibodies produced against polymerized C1-inh were applied in native PAGE western blotting. Using this approach we analyzed genuine plasma samples from 31 Danish HAE families, and found that plasma samples from three genotypically distinct HAE type I families (classified upon C1-inh plasma concentrations) contained C1-inh polymers. Identical C1-inh polymerization phenotypes were observed in four affected family members from one of these families. Genotyping of the families revealed that the polymerogenic mutations of two families were located in proximity to the reactive center loop insertion site in C1-inh (p.Ile271Thr and p.Ser258_Pro260del),and one mutation affected helix C (p.Thr167Asn). In conclusion, we demonstrate that C1-inh polymers are present in the plasma of a subgroup of HAE type I patients.  相似文献   

15.
The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles.This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

16.
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.  相似文献   

17.
BACKGROUND: Acquired C1-inhibitor (C1-inh) deficiency is usually associated with the presence of circulating C1-inh autoantibodies. These autoantibodies have been shown previously to bind to two synthetic peptides corresponding to C1-inh amino acid residues 438-449 (peptide 2) and 448-459 (peptide 3) but not to peptide 1 (residues 428-440). MATERIALS AND METHODS: Affinity-purified C1-inh autoantibodies from two patients with acquired C1-inh deficiency were studied for their effects on the inhibition of C1s activity by C1-inh using SDS-PAGE and hydrolysis of a synthetic ester. RESULTS: Functional studies confirmed that the anti-C1-inh autoantibodies abrogated C1-inh activity, and their maximum effect was produced when the concentrations of C1-inh and autoantibody were approximately equimolar. The autoantibodies prevent the formation of the C1s-C1-inh complex, but they do not dissociate the preformed complex, suggesting that the autoantibodies act prior to the formation of the enzyme-inhibitor complex. In the presence of autoantibodies, C1s cleaves C1-inh, and a stable covalent bond between C1s and C1-inh does not form. Peptides 2 and 3, but not peptide 1 inhibited autoantibody activity, thus C1-inh inhibitory activity for C1s was expressed fully. CONCLUSIONS: Our data indicate that the anti-C1-inh autoantibodies convert C1-inh to a substrate by preventing the formation of the stable covalent protease-serpin complex. The data also suggest a possible therapeutic use for peptides 2 and 3 or their derivatives in the management of patients with type II acquired angioedema (AAE).  相似文献   

18.
The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32.  相似文献   

19.
Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of “conventional” complement deficiencies with these newly described developmental roles.  相似文献   

20.
MBL is a serum lectin that activates the lectin pathway of the complement system. MBL forms complexes with three types of MASPs. Upon binding to Salmonella serogroup C-specific oligosaccharide, MBL activates the alternative pathway via a C2-bypass pathway without involving MASP-2, C2 or C4. We demonstrate that mannan-bound MBL activates the alternative pathway via a C2-bypass pathway that requires MASP-2 and C4. Thus, depending on the ligands to which MBL binds, there may be two distinct MBL-mediated C2-bypass pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号