首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryo-electron microscopy has the power to visualise lipid membranes at the closest to in vivo conditions. The structure of the lipid bilayer can be well resolved and the interactions between lipid-protein and protein-protein molecules followed at the molecular level. We undertook an extended Cryo-electron microscopy study to follow the factor VIII binding to phosphatidylserine containing lipid nanotubes at different lipid composition. Obtaining well ordered tubes is required to define the factor VIII membrane-bound structure. The observed alterations in the arrangement of the protein molecules are indicative for the flexibility of the membrane-bound factor VIII. Understanding the significance of these conformational changes is essential to comprehend the function of factor VIII in coagulation and as a drug for Hemophilia A.  相似文献   

2.
Activation of coagulation factor X via the intrinsic pathway requires the assembly of factors IXa and VIII on lipid membranes. It is known that the platelet expresses membrane sites for assembly of factors IXa/VIII and promotes efficient factor X activation. We now show that human blood monocytes, but not lymphocytes or polymorphonuclear leukocytes, also express appropriate sites for factors IXa/VIII assembly. The maximal rate of factor X activation by factors IXa (0.75 nM) and VIII (1 unit/ml) assembled on monocytes is similar to the maximal rate on platelets. This rate, adjusted per micromole of lipid phosphorus, is 1636 +/- 358 nM factor Xa/min on monocyte, and 1569 +/- 54 nM factor Xa/min on platelets. At physiologic concentrations of factors X and VIII, the activation rate increases with factor IXa concentration asymptotically approaching a maximum. Half-maximal rate is achieved with 1.0 +/- 0.16 nM factor IXa. Monocytes and macrophages, but not platelets, can express membrane tissue factor and thus promote simultaneous assembly of two distinct factor X-activating protease complexes. In these studies, blood monocytes and alveolar macrophages are used as membrane sources in kinetic experiments comparing factor X activation by intrinsic (factor IXa/VIII) versus extrinsic (factor VII/tissue factor) protease complexes. At plasma concentration of factors VIII and VII, apparent Km on the monocyte is 14.6 +/- 1.4 nM for intrinsic and 117.0 +/- 10.1 nM for extrinsic activation. The apparent Km on alveolar macrophages is 12.1 +/- 1.9 and 90.6 +/- 10.2 nM for intrinsic and extrinsic activation, respectively. Maximal rates on monocytes at saturating concentration of factors IXa, VIII, and VII are 48.0 +/- 11.2 nM factor Xa/min, for intrinsic activation, and 16.5 +/- 5.5 nM factor Xa/min, for extrinsic activation. These data show that the monocyte/macrophage is the only blood-derived cell type with membrane sites for both intrinsic and extrinsic pathway assembly. We have exploited this characteristic of the monocyte/macrophage membrane to demonstrate that factor X activation by the intrinsic pathway protease is more efficient than activation via the extrinsic pathway protease complex.  相似文献   

3.
Mutations in LMAN1 (ERGIC-53) and MCFD2 are the causes of a human genetic disorder, combined deficiency of coagulation factor V and factor VIII. LMAN1 is a type 1 transmembrane protein with homology to mannose-binding lectins. MCFD2 is a soluble EF-hand-containing protein that is retained in the endoplasmic reticulum through its interaction with LMAN1. We showed that endogenous LMAN1 and MCFD2 are present primarily in complex with each other with a 1:1 stoichiometry, although MCFD2 is not required for oligomerization of LMAN1. Using a cross-linking-immunoprecipitation assay, we detected a specific interaction of both LMAN1 and MCFD2 with factor VIII, with the B domain as the most likely site of interaction. We also present evidence that this interaction is independent of the glycosylation state of factor VIII but requires native calcium concentration in the endoplasmic reticulum. The interaction of MCFD2 with factor VIII appeared to be independent of LMAN1-MCFD2 complex formation. These results suggest that LMAN1 and MCFD2 form a cargo receptor complex and that the primary sorting signals residing in the B domain direct the binding of factor VIII to LMAN1-MCFD2 through calcium-dependent protein-protein interactions. MCFD2 may function to specifically recruit factor V and factor VIII to sites of transport vesicle budding within the endoplasmic reticulum lumen.  相似文献   

4.
The functional domains of coagulation factor VIII:C   总被引:11,自引:0,他引:11  
A lack of factor VIII:C, manifested as a bleeding disorder due to the absence of clot formation, is known as hemophilia A, an X chromosome-linked inherited disease afflicting 1-2 males/10,000. To determine the minimum functional domain(s) essential for factor VIII:C activity, we have expressed the amino-terminal (92-kDa) and carboxyl-terminal (80-kDa) proteolytic cleavage products as individual, secreted polypeptides in monkey cells without the 909-residue central region. We have found that neither terminal domain alone is able to promote coagulation in factor VIII:C-deficient plasma. However, when the 92- and 80-kDa peptides are co-expressed, clotting activity is readily detected. Thus, these two chains alone constitute an active or activatable complex. The central domain is required neither for activity nor for the assembly of an active complex from two chains expressed in trans. These results suggest that a truncated derivative of factor VIII:C may be useful in coagulation therapy.  相似文献   

5.
6.
Factor VIII is an important blood coagulation protein whose genetic deficiency leads to the serious bleeding disorder, classic haemophilia (haemophilia A).Here we review the structure, function and analysis of this protein for diagnostic and therapeutic applications. Because factor VIII is tightly associated with von Willebrand factor some recent work on the latter is also considered so as to clarify the relationship between them.  相似文献   

7.
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane‐associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo‐electron microscopy (cryo‐EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ~20 nm inner diameter and a few microns in length, that self‐assemble in aqueous solutions. The lipid nanodisks (NDs) are self‐assembled discoid lipid bilayers of ~10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane‐associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane‐bound coagulation factor VIII in vitro for structure determination by cryo‐EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three‐dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane‐associated proteins and complexes for structural studies by cryo‐EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane‐associated proteins, such as the coagulation factors, at a close to physiological environment. Proteins 2014; 82:2902–2909. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.  相似文献   

9.
Activation of factor VIII by thrombin occurs via limited proteolysis at R372, R740, and R1689. The resultant active factor VIIIa molecule consists of three noncovalently associated subunits: A1-a1, A2-a2, and A3-C1-C2 (50, 45, and 73 kDa respectively). Further proteolysis of factor VIIIa at R336 and R562 by activated protein C subsequently inactivates this cofactor. We now find that the factor VIIa-tissue factor complex (VIIa-TF/PL), the trigger of blood coagulation with restricted substrate specificity, can also catalyze limited proteolysis of factor VIII. Proteolysis of factor VIII was observed at 10 sites, producing 2 major fragments (47 and 45 kDa) recognized by an anti-factor VIII A2 domain antibody. Time courses indicated the slow conversion of the large fragment to 45 kDa, followed by further degradation into at least two smaller fragments. N-Terminal sequencing along with time courses of proteolysis indicated that VIIa-TF/PL cleaved factor VIII first at R740, followed by concomitant cleavage at R336 and R372. Although cleavage of the light chain at R1689 was observed, the majority remained uncleaved after 17 h. Consistent with this, only a transient 2-fold increase in factor VIII clotting activity was observed. Thus, heavy chain cleavage of factor VIII by VIIa-TF/PL produces an inactive factor VIII cofactor no longer capable of activation by thrombin. In addition, VIIa-TF/PL was found to inactivate thrombin-activated factor VIII. We hypothesize that these proteolyses may constitute an alternative pathway to regulate coagulation under certain conditions. In addition, the ability of VIIa-TF/PL to cleave factor VIII at 10 sites greatly expands the known protein substrate sequences recognized by this enzyme-cofactor complex.  相似文献   

10.
Hemophilia A, an X-linked disease caused by deficiency of factor VIII, is characterized by variation in clinical severity and coagulation activity. This variation is though to reflect heterogeneity of mutations in the factor VIII gene. Here we describe a CG-to-CA mutation within a potential cryptic donor splice site in intron 4 of the factor VIII gene from a patient with mild disease. This mutation makes the cryptic sequence resemble more closely the consensus sequence for donor splice sites. We infer that the mutation activates the cryptic donor splice site, which in turn causes a defect in RNA processing.  相似文献   

11.
Factor VIII coagulation activity (VIII:C) and factor VIII associated antigen (VIII:AGN) were determined in healthy newborns and in children with charging perinatal factors ("risk children"). VIII:C values of healthy newborns may be compared with those of grown-ups with normal coagulation. Risk children have somewhat higher values than newborns, the difference, however, being statistically not significant. The concentration of VIII:AGN is clearly increased in both groups on the first day of life. Moreover, VIII:AGN is being eliminated more slowly in risk children. The increased VIII:AGN concentrations are considered as a sequel of stress conditions caused by birth, whereas the discrepancy between VIII:C and VIII:AGN is due to a thrombin effect.  相似文献   

12.
Most causes of abnormal bleeding can be determined from a complete blood count including platelet count and bleeding, prothrombin, activated partial thromboplastin, and thrombin times. Occasionally, further evaluation is necessary, such as tests of factor XIII function, fibrinolysis, and vascular integrity. Possible diagnoses include disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, vitamin K deficiency, von Willebrand''s disease, heparin-induced thrombocytopenia, acquired inhibitors of factor VIII, lupus anticoagulants, and coagulation disorders related to the acquired immunodeficiency syndrome.  相似文献   

13.
von Willebrand factor (vWF) is a multimeric glycoprotein that promotes platelet aggregation and stabilizes coagulation factor VIII in the plasma. vWF is also required for the stable accumulation of recombinant factor VIII secreted from cells in a heterologous expression system. In this report, we show that vWF can promote the in vitro reconstitution of factor VIII activity from dissociated heavy and light chains of factor VIII, suggesting that vWF may act to promote stable assembly of factor VIII subunits at the site of secretion. The structural requirements for vWF propeptide cleavage and for vWF multimerization in its binding and stabilization of factor VIII was examined using specifically altered recombinant vWF. The mutant vWF molecules were also assayed for their function in ristocetin-induced platelet agglutination mediated through the platelet receptor GPIb. Deletion of the vWF propeptide produced a dimeric vWF molecule that failed to mediate platelet agglutination, suggesting that multimerization is required for vWF to attain functional GPIb binding. This mature dimeric form of vWF, however, was fully capable of binding to and supporting stable secretion of factor VIII. A vWF mutant with an altered propeptide cleavage site formed large multimers of uncleaved pro-vWF that functioned in platelet agglutination. However, this noncleavage mutant neither bound to or supported stable accumulation of factor VIII. Analysis of the vWF propeptide, expressed independently, demonstrated that it could not bind factor VIII or stabilize its secretion. These results show that the dimeric mature vWF subunit is sufficient to bind and stabilize factor VIII and that the presence of uncleaved vWF propeptide inhibits both factor VIII binding and stabilization.  相似文献   

14.
The coagulation factor VIII (FVIII) is the coagulation factor deficient in the X-chromosome-linked bleeding disorder hemophilia A. Previous transfection studies demonstrated that factor VIII was 10-100-fold less efficiently expressed than the homologous coagulation factor, factor V. To investigate the regulatory mechanisms of FVIII synthesis and secretion, we used the yeast two-hybrid system as an approach to search for proteins that associated with FVIII. The A2 domain (337-740 amino acids) of factor VIII (FVIII-A2) was used as a bait and phytanoyl-CoA alpha-hydroxylase (PAHX) was identified as a binding protein of FVIII-A2. PAHX had potential to interact with the residues 373-508 within the A2 domain, but not with A1 and A3 (the homologous domains of A2). The interaction between the A2 domain and PAHX was independent of the type 2 peroxisomal targeting signal (PTS2) of PAHX. Overexpression of PAHX in FVIII-produced cells decreased the expression of FVIII by about 70%. The elevated expression of von Willebrand factor had no effect on the suppression of FVIII secretion by PAHX. Expression of the green fluorescent PAHX fusion protein in SMMC-7721 cells affected the intracellular trafficking of FVIII-A2. These results suggested that the interaction between PAHX and FVIII-A2 was in part responsible for the low-level expression of factor VIII.  相似文献   

15.
Polyamino-polycarboxyl acids (ampholines) used for electrofocusing have the effect of shortening the coagulation time during the one stage test, which is in direct proportion to the activity of factor VIII already present. Compared with factor VIII, ampholine 5-7 and 7-10 have a different range of effect as far as their stimulating activity is concerned. For increasing their activity a minimum PPCS concentration of 0.1 m Mol/l is required in the test run. There is no own effect of these substances similar to factor VIII. The activity of factor IX and X is not influenced. Ampholines gained from acrylic acid and ethylenediamine will not enhance the activity of factor VIII in the course of the one stage test.  相似文献   

16.
Lactadherin is a phosphatidyl-L-serine (Ptd-L-Ser)-binding protein that decorates membranes of milk fat globules. The major Ptd-l-Ser binding function of lactadherin has been localized to its C2 domain, which shares homology with the C2 domains of blood coagulation factor VIII and factor V. Correlating with this homology, purified lactadherin competes efficiently with factors VIII and V for Ptd-L-Ser binding sites, functioning as a potent anticoagulant. We have determined the crystal structure of the lactadherin C2 domain (Lact-C2) at 1.7A resolution. The bovine Lact-C2 structure has a beta-barrel core that is homologous with the factor VIII C2 (fVIII-C2) and factor V C2 (fV-C2) domains. Two loops at the end of the beta-barrel, designated spikes 1 and 3, display four water-exposed hydrophobic amino acids, reminiscent of the membrane-interactive residues of fVIII-C2 and fV-C2. In contrast to the corresponding loops in fVIII-C2 and fV-C2, spike 1 of Lact-C2 adopts a hairpin turn in which the 7-residue loop is stabilized by internal hydrogen bonds. Further, central glycine residues in two membrane-interactive loops may enhance conformability of Lact-C2 to membrane binding sites. Mutagenesis studies confirmed a membrane-interactive role for the hydrophobic and/or Gly residues of both spike 1 and spike 3. Substitution of spike 1 of fVIII-C2 into Lact-C2 also diminished binding. Computational ligand docking studies identified two prospective Ptd-l-Ser interaction sites. These results identify two membrane-interactive loops of Lact-C2 and provide a structural basis for the more efficient phospholipid binding of lactadherin as compared with factor VIII and factor V.  相似文献   

17.
Hemophilia A is a common X chromosome-linked genetic bleeding disorder caused by abnormalities in the coagulation factor VIII gene (F8). Hemophilia A patients suffer from a bleeding diathesis, such as life-threatening bleeding in the brain and harmful bleeding in joints and muscles. Because it could potentially be cured by gene therapy, subhuman animal models have been sought. Current mouse hemophilia A models generated by gene targeting of the F8 have difficulties to extrapolate human disease due to differences in the coagulation and immune systems between mice and humans. Here, we generated a porcine model of hemophilia A by nuclear transfer cloning from F8-targeted fibroblasts. The hemophilia A pigs showed a severe bleeding tendency upon birth, similar to human severe hemophiliacs, but in contrast to hemophilia A mice which rarely bleed under standard breed conditions. Infusion of human factor VIII was effective in stopping bleeding and reducing the bleeding frequency of a hemophilia A piglet but was blocked by the inhibitor against human factor VIII. These data suggest that the hemophilia A pig is a severe hemophilia A animal model for studying not only hemophilia A gene therapy but also the next generation recombinant coagulation factors, such as recombinant factor VIII variants with a slower clearance rate.  相似文献   

18.
Human MCFD2 (multiple coagulation factor deficiency 2) is a 16-kDa protein known to participate in transport of the glycosylated human coagulation factors V and VIII along the secretory pathway. Mutations in MCFD2 or in its binding partner, the membrane-bound transporter ERGIC (endoplasmic reticulum-Golgi intermediate compartment)-53, cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). While ERGIC-53 is known to be a lectin-type mannose binding protein, the role of MCFD2 in the secretory pathway is comparatively unclear. MCFD2 has been shown to bind both ERGIC-53 and the blood coagulation factors, but little is known about the binding sites or the true function of the protein. In order to facilitate understanding of the function of MCFD2 and the mechanism by which mutations in the protein cause F5F8D, we have determined the structure of human MCFD2 in solution by NMR. Our results show the folding of MCFD2 to be dependent on availability of calcium ions. The protein, which is disordered in the apo state, folds upon binding of Ca2+ to the two EF-hand motifs of its C-terminus, while retaining some localized disorder in the N-terminus. NMR studies on two disease-causing mutant variants of MCFD2 show both to be predominantly disordered, even in the presence of calcium ions. These results provide an explanation for the previously observed calcium dependence of the MCFD2-ERGIC-53 interaction and, furthermore, clarify the means by which mutations in this protein result in inefficient secretion of blood coagulation factors V and VIII.  相似文献   

19.
By referring initially to remarks about the structure and function of the coagulation factor VIII and about the manufacture and demand for preparations for the substitution treatment in patients affected with haemophilia A, possibilities are presented how to increase the collection of factor VIII by applying intensive measures. These involve the impact on the basic material (including donors) as well as process variables within the range of plasma collection and process technique. On the basis of own research results and data from literature the following measures can be introduced and evaluated as far as their effect on the collection of factor VIII is concerned: Donor testing, selection: increased by 25% approximately Plasmapheresis, blood bags: (prerequisite for certain technological measures) Thawing technique: increase by 20-30% approximately (thaw siphon) Citrate-free anticoagulant: increase by 30% approximately (e.g. heparin) Donor conditioning: increased by 200-400% approximately (DDAVP) The establishment of possible and reasonable combinations of measures can contribute to intensify the collection of factor VIII. The advantages to be expected are mentioned. The level of gene-technological collection of factor VIII is dealt with prospectively.  相似文献   

20.
Summary Using a fragment of the cDNA for human coagulation factor VIII as a hybridization probe, we have detected a new polymorphic Hind III site in intron 19 of the factor VIII gene. The frequency of the minor allele is 0.30. This polymorphism shows strong linkage disequilibrium with a previously described BclI polymorphism in intron 18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号