首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang H  Cronan JE 《Biochemistry》2004,43(37):11782-11789
The small genome of the Gram-positive bacterium Lactococcus lactis ssp. lactis IL1403 contains two genes that encode proteins annotated as homologues of Escherichia coli beta-hydroxyacyl-acyl carrier protein (ACP) reductase. E. coli fabG encodes beta-ketoacyl-acyl carrier protein (ACP) reductase, the enzyme responsible for the first reductive step of the fatty acid synthetic cycle. Both of the L. lactis genes are adjacent to (and predicted to be cotranscribed with) other genes that encode proteins having homology to known fatty acid synthetic enzymes. Such relationships have often been used to strengthen annotations based on sequence alignments. Annotation in the case of beta-ketoacyl-ACP reductase is particularly problematic because the protein is a member of a vast protein family, the short-chain alcohol dehydrogenase/reductase (SDR) family. The recent isolation of an E. coli fabG mutant strain encoding a conditionally active beta-ketoacyl-ACP reductase allowed physiological and biochemical testing of the putative L. lactishomologues. We report that expression of only one of the two L. lactis proteins (that annotated as FabG1) allows growth of the E. coli fabG strain under nonpermissive conditions and restores in vitro fatty acid synthetic ability to extracts of the mutant strain. Therefore, like E. coli, L. lactis has a single beta-ketoacyl-ACP reductase active with substrates of all fatty acid chain lengths. The second protein (annotated as FabG2), although inactive in fatty acid synthesis both in vivo and in vitro, was highly active in reduction of the model substrate, beta-ketobutyryl-CoA. As expected from work on the E. coli enzyme, the FabG1 beta-ketobutyryl-CoA reductase activity was inhibited by ACP (which blocks access to the active site) whereas the activity of FabG2 was unaffected by the presence of ACP. These results seem to be an example of a gene duplication event followed by divergence of one copy of the gene to encode a protein having a new function.  相似文献   

2.
beta-Ketoacyl-acyl carrier protein reductase (FabG) is a key component in the type II fatty acid synthase system. The structures of Escherichia coli FabG and the FabG[Y151F] mutant in binary complexes with NADP(H) reveal that mechanistically important conformational changes accompany cofactor binding. The active site Ser-Tyr-Lys triad is repositioned into a catalytically competent constellation, and a hydrogen bonded network consisting of ribose hydroxyls, the Ser-Tyr-Lys triad, and four water molecules creates a proton wire to replenish the tyrosine proton donated during catalysis. Also, a disordered loop in FabG forms a substructure in the complex that shapes the entrance to the active site. A key observation is that the nicotinamide portion of the cofactor is disordered in the FabG[Y151F].NADP(H) complex, and Tyr151 appears to be necessary for high-affinity cofactor binding. Biochemical data confirm that FabG[Y151F] is defective in NADPH binding. Finally, structural changes consistent with the observed negative cooperativity of FabG are described.  相似文献   

3.
Inhibitory effects on bacterial growth showed that 40% ethanol extract of galangal (rhizome of Alpinia officinarum Hance) can inhibit Staphylococcus aureus, alpha-Hemolytic streptococcus, beta-Hemolytic streptococcus and Streptococcus pneumoniae. beta-ketoacyl-ACP reductase (FabG, EC.1.1.1.100) is a key enzyme in type II fatty acid synthase system in bacteria and catalyzes beta-ketoacyl-ACP reduction. The galangal extracts inhibited FabG with an IC(50) value of only 4.47 +/- 0.10 microg/mL and is more potent than other previously published inhibitors. Kinetics studies showed that the inhibition consisted of both reversible and irreversible inhibition. The extracts of galangal inhibit FabG in a competitive pattern against NADPH. So far, no inhibitor has been reported to exhibit irreversible inhibition of FabG, whereas the galangal ethanol extract can inhibit FabG irreversibly. The irreversible inhibition presented two phases. It is probable that the galangal extract inhibit FabG, thereby displaying antibacterial ability.  相似文献   

4.
FabG, beta-ketoacyl-acyl carrier protein (ACP) reductase, performs the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. We report the first documented fabG mutants and their characterization. By chemical mutagenesis followed by a tritium suicide procedure, we obtained three conditionally lethal temperature-sensitive fabG mutants. The Escherichia coli [fabG (Ts)] mutant contains two point mutations: A154T and E233K. The beta-ketoacyl-ACP reductase activity of this mutant was extremely thermolabile, and the rate of fatty acid synthesis measured in vivo was inhibited upon shift to the nonpermissive temperature. Moreover, synthesis of the acyl-ACP intermediates of the pathway was inhibited upon shift of mutant cultures to the nonpermissive temperature, indicating blockage of the synthetic cycle. Similar results were observed for in vitro fatty acid synthesis. Complementation analysis revealed that only the E233K mutation was required to give the temperature-sensitive growth phenotype. In the two Salmonella enterica serovar Typhimurium fabG(Ts) mutants one strain had a single point mutation, S224F, whereas the second strain contained two mutations (M125I and A223T). All of the altered residues of the FabG mutant proteins are located on or near the twofold axes of symmetry at the dimer interfaces in this homotetrameric protein, suggesting that the quaternary structures of the mutant FabG proteins may be disrupted at the nonpermissive temperature.  相似文献   

5.
Karmodiya K  Surolia N 《Proteins》2008,70(2):528-538
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.  相似文献   

6.
trans-Cinnamic acid and its derivatives were investigated for the alpha-glucosidase inhibitory activity. 4-Methoxy-trans-cinnamic acid and 4-methoxy-trans-cinnamic acid ethyl ester showed the highest potent inhibitory activity among those of trans-cinnamic acid derivatives. The presence of substituents at 4-position in trans-cinnamic acid altered the alpha-glucosidase inhibitory activity. Increasing of bulkiness and the chain length of 4-alkoxy substituents as well as the increasing of the electron withdrawing group have been shown to decrease the inhibitory activity. 4-Methoxy-trans-cinnamic acid was a noncompetitive inhibitor for alpha-glucosidase, whereas, 4-methoxy-trans-cinnamic acid ethyl ester was a competitive inhibitor. These results indicated that trans-cinnamic acid derivatives could be classified as a new group of alpha-glucosidase inhibitors.  相似文献   

7.
A series of sulfur-containing heterocyclic pyrazoline derivatives (C1-C18; D1-D9) have been synthesized and purified (all are new except one) to be screened for FabH inhibitory activity. Compound C14 showed the most potent biological activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis (MIC values: 1.56-3.13 μg/mL), being comparable with the positive control, while D6 performed the best in the thiazolidinone series (MIC values: 3.13-6.25 μg/mL). They also demonstrated strong broad-spectrum antimicrobial activity. Compounds C14 and D6 exhibited the most potent E. coli FabH inhibitory activity with IC(50) of 4.6 and 8.4 μM, respectively, comparable with the positive control DDCP (IC(50)=2.8 μM). Docking simulation was performed to position compound C14 and D6 into the E. coli FabH structure active site to determine the probable binding model. The structurally modification of previous compounds and the attempt in innovative target have brought a positive progress.  相似文献   

8.
In this work, we report the synthesis and the antimycobacterial evaluation of new trans-cinnamic acid derivatives of isonicotinic acid series (5) and benzoic acid series (6), designed by exploring the molecular hybridization approach between isoniazid (1) and trans-cinnamic acid derivative (3). The minimum inhibitory concentration (MIC) of the compounds 5a-d and 6c exhibited activity between 3.12 and 12.5 microg/mL and could be a good start point to find new lead compounds against multi-drug resistant tuberculosis.  相似文献   

9.
The type II fatty acid synthase (FAS) pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials, due to its intrinsic differences from the typeI pathway operating in humans. beta-Ketoacyl acyl carrier protein (ACP) reductase (FabG) performs the NADPH-dependent reduction of beta-ketoacyl-ACP to beta-hydroxyacyl-ACP, the first reductive step in the elongation cycle of fatty acid biosynthesis. In this article, we report intensive studies on the direct interactions of Plasmodium FabG and Plasmodium ACP in solution, in the presence and absence of its cofactor, NADPH, by monitoring the change in intrinsic fluorescence of P.falciparum FabG (PfFabG) and by surface plasmon resonance. To address the issue of the importance of the residues involved in strong, specific and stoichiometric binding of PfFabG to P.falciparum ACP (PfACP), we mutated Arg187, Arg190 and Arg230 of PfFabG. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The affinities of all the PfFabG mutants for acetoacetyl-ACP (the physiological substrate) were reduced to different extents as compared to wild-type PfFabG, but were equally active in biochemical assays with the substrate analog acetoacetyl-CoA. Kinetic analysis and studies of direct binding between PfFabG and PfACP confirmed the identification of Arg187 and Arg230 as critical residues for the PfFabG-PfACP interactions. Our studies thus reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of PfFabG for interactions with PfACP.  相似文献   

10.
A C Price  Y M Zhang  C O Rock  S W White 《Biochemistry》2001,40(43):12772-12781
The structure of beta-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli was determined via the multiwavelength anomalous diffraction technique using a selenomethionine-labeled crystal containing 88 selenium sites in the asymmetric unit. The comparison of the E. coli FabG structure with the homologous Brassica napus FabG.NADP(+) binary complex reveals that cofactor binding causes a substantial conformational change in the protein. This conformational change puts all three active-site residues (Ser 138, Tyr 151, and Lys 155) into their active configurations and provides a structural mechanism for allosteric communication between the active sites in the homotetramer. FabG exhibits negative cooperative binding of NADPH, and this effect is enhanced by the presence of acyl carrier protein (ACP). NADPH binding also increases the affinity and decreases the maximum binding of ACP to FabG. Thus, unlike other members of the short-chain dehydrogenase/reductase superfamily, FabG undergoes a substantial conformational change upon cofactor binding that organizes the active-site triad and alters the affinity of the other substrate-binding sites in the tetrameric enzyme.  相似文献   

11.
A novel series of benzothiazole urea and thiourea derivatives was synthesized and evaluated for its in vitro cytotoxicity against MCF-7 breast cancer cells. The N1-(benzothiazol-2-yl)-N3-morpholinourea 3 displayed the highest cytotoxic activity in this series. A docked pose of 3 was obtained bound to G-quadruplex of human telomere DNA active site using the Molecular Operating Environment (MOE) module. Moreover, the synthesized compounds were screened for their antimicrobial activity against Mycobacterium tuberculosis H37Rv, E. coli, S. aureus and C. albicans. Again, 3 showed the best activity against M. tuberculosis H37Rv while other compounds were equipotent with ampicillin against S. aureus and E. coli.  相似文献   

12.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

13.
Compounds based on the isoxazoline moiety were screened for their antimycobacterial activity in vitro against Mycobacterium tuberculosis H37R (MTB), and INH (isoniazid) resistant Mycobacterium tuberculosis (INHR-MTB) using the agar dilution method and bactec 460. Among the synthesized compounds, 4-[5-(4-bromophenyl)-4,5-dihydro-3-isoxazolyl]-2-methylphenol (4l) was found to be the most active agent against MTB and INHR-MTB with minimum inhibitory concentration of 0.62 microM. When compared to INH, compound (4l) was 1.12 fold and 3.0 fold more active against MTB and INHR-MTB, respectively.  相似文献   

14.
In the present study, 5-substituted-1,3,4-oxadiazolin-2-thiones (1a-b) were synthesized via the ring closure reactions of appropriate acid hydrazides with carbon disulphide. N-(Benzothiazol-2-yl)-2-[[5-substituted-1,3,4-oxadiazol-2-yl]sulfanyl]acetamide derivatives (3a-j) were obtained by the nucleophilic substitution reactions of 5-substituted-1,3,4-oxadiazolin-2-thiones (1a-b) with N-(benzothiazol-2-yl)-2-chloroacetamides. The chemical structures of the compounds were elucidated by IR, (1)H NMR, (13)C NMR and FAB(+)-MS spectral data and elemental analyses. The synthesized compounds were screened for their antimicrobial activities against Micrococcus luteus, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans. All compounds except compound 3h exhibited the highest antibacterial activity against P. aeruginosa. Among all compounds (3a-j), the compounds bearing 4-methoxyphenoxymethyl moiety on oxadiazole ring (3a-e) exhibited the highest inhibitory activity against C. albicans. Although compound 3j did not possess 4-methoxyphenoxymethyl moiety on oxadiazole ring, this derivative also exhibited the same level of anti-candidal activity. The compounds were also investigated for their cytotoxic effects using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Compound 3a exhibited the highest cytotoxic activity, whereas compound 3g possessed the lowest cytotoxic activity against NIH/3T3 cells.  相似文献   

15.
Analogues of the natural antibiotic thiolactomycin, with acetylene-based side chains, have the highest recorded in vitro inhibitory activity against the recombinant Mycobacterium tuberculosis beta-ketoacyl-ACP synthase mtFabH condensing enzyme. In particular, 5-[3-(4-acetyl-phenyl)-prop-2-ynyl]-4-hydroxy-3,5-dimethyl-5H-thiophen-2-one exhibited more than an 18-fold increased potency, compared to thiolactomycin, against this key condensing enzyme, involved in M. tuberculosis mycolic acid biosynthesis. Analogues of the antibiotic thiolactomycin, with acetylene-based side chains, have the highest recorded activity against cloned mtFabH condensing enzyme.  相似文献   

16.
A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC?? of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

17.
In order to clarify the role of the 1-substituent of quinazoline derivatives in their inhibitory activity against poly(ADP-ribose) polymerase (PARP), two novel inhibitors, 1 [8-hydroxy-1-(3-morpholinopropyl)-quinazoline-2,4(1H,3H)-dione] and 2 [8-hydroxy-1-(3-phenoxypropyl)-quinazoline-2,4(1H,3H)-dione], were synthesized and subjected to X-ray crystal analysis in complex with the PARP C-terminal catalytic domain (PARP-CD), which requires NAD+ coenzyme for biological function. The nicotinamide-mimicking part of the quinazoline skeleton of 1 and 2 were both located at the nicotinamide subsite of the NAD+-binding pocket in the same manner as previously reported inhibitors: three hydrogen bonds [(Gly-863)NH-O12, (Gly-863)O-HN3 and (Ser-904)O(gamma)-O12] and stacking interaction between the Tyr-907 phenol and the quinazoline ring. On the other hand, the N-morpholinoprop-3-yl moiety introduced at the 1-position of the quinazoline ring in 1 bridged the large gap between the donor site and the acceptor site through a (Met-890)NH-O20(morpholine) hydrogen bond, where the donor and the acceptor sites are classified as the binding sites of NAD+ and the ADP moiety of the poly(ADP-ribose) chain, respectively. In contrast, the N-phenoxyprop-3-yl moiety in 2 formed hydrophobic interactions close to the adenosine-binding site of NAD+, unlike the hydrogen bond such as in 1. As the inhibitory activities of 1 and 2 for PARP were much more potent than those of the unsubstituted nicotinamide analogues, these results suggest that the occupation of the proximal region of the ADP phosphate-and adenosine-binding subsite of the donor site or that of the gap between the donor and the acceptor site by the 1-substituent of quinazoline may increase the inhibitory activity considerably. The nearly equal inhibitory activities of 1 and 2, despite of their different binding modes at the active site, indicate that this 1-substituent is promising in improving the bioavailability of the inhibitor without compromising its inhibitory activity.  相似文献   

18.
Epigallocatechin gallate (EGCG) is the major component of green tea extracts and possesses antibacterial, antiviral, and antitumor activity. Our study focused on validating the inhibition of the bacterial type II fatty acid synthesis system as a mechanism for the antibacterial effects of EGCG and related plant polyphenols. EGCG and the related tea catechins potently inhibited both the FabG and FabI reductase steps in the fatty acid elongation cycle with IC(50) values between 5 and 15 microm. The presence of the galloyl moiety was essential for activity, and EGCG was a competitive inhibitor of FabI and a mixed type inhibitor of FabG demonstrating that EGCG interfered with cofactor binding in both enzymes. EGCG inhibited acetate incorporation into fatty acids in vivo, although it was much less potent than thiolactomycin, a validated fatty acid synthesis inhibitor, and overexpression of FabG, FabI, or both did not confer resistance. A panel of other plant polyphenols was screened for FabG/FabI inhibition and antibacterial activity. Most of these inhibited both reductase steps, possessed antibacterial activity, and inhibited cellular fatty acid synthesis. The ability of the plant secondary metabolites to interfere with the activity of multiple NAD(P)-dependent cellular processes must be taken into account when assessing the specificity of their effects.  相似文献   

19.
C E Nakamura  R H Abeles 《Biochemistry》1985,24(6):1364-1376
The sodium salts of compactin (1) and trans-6-[2-(2,4- dichloro-6-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydro-4-hydroxy-2H-pyran- 2-one (3) are inhibitors of yeast beta-hydroxy-beta-methylglutaryl coenzyme A (HMG-CoA) reductase. The dissociation constants are 0.24 X 10(-9) and 0.28 X 10(-9) M, respectively. Similar values have been reported for HMG-CoA reductase from mammalian sources [Endo, A., Kuroda, M., & Tanzawa, K. (1976) FEBS Lett. 72, 323; Alberts, A. W., et al. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 3957]. The structures of these compounds marginally resemble that of any substrates of HMG-CoA reductase. We, therefore, investigated the basis for the strong interaction between HMG-CoA reductase and these inhibitors. HMG-CoA and coenzyme A (CoASH), but not reduced nicotinamide adenine dinucleotide phosphate (NADPH), prevent binding of compactin to the enzyme. HMG-CoA, but not CoASH or NADPH, prevents binding of 3 to the enzyme. We also investigated the inhibitory activity of molecules that resemble structural components of compactin. Compactin consists of a moiety resembling 3,5-dihydroxyvaleric acid that is attached to a decalin structure. The sodium salt of DL-3,5-dihydroxyvaleric acid inhibits HMG-CoA reductase competitively with respect to HMG-CoA and noncompetitively with respect to NADPH. The dissociation constant for DL-3,5-dihydroxyvaleric acid, derived from protection against inactivation of enzyme by iodoacetic acid, is (2.1 +/- 0.9) X 10(-2) M. Two decalin derivatives (structurally identical with or closely related to the decalin moiety of compactin) showed no detectable inhibition. If the lack of inhibition is due to their limited solubility, the dissociation constant of these decalin derivatives may be conservatively estimated to be greater than or equal to 0.5 mM. Simultaneous addition of decalin derivatives and DL-3,5-dihydroxyvaleric acid does not lead to enhanced inhibition. The sodium salt of (E)-6-[2-(2-methoxy-1-naphthalenyl)ethenyl]-3,4,5,6- tetrahydro-4-hydroxy-2H-pyran-2-one (6) inhibits HMG-CoA reductase competitively with respect to HMG-CoA and noncompetitively with respect to NADPH. The inhibition constant (vs. HMG-CoA) is 0.8 microM. CoASH does not prevent binding of 6 to enzyme. Compound 6, therefore, behaves analogously to compound 3. We propose that these inhibitors occupy two sites on the enzyme: one site is the hydroxymethylglutaryl binding domain of the enzyme active site and the other site is a hydrophobic pocket located adjacent to the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Phenoxypropionic acid derivatives (Ia-s) with an imidazo[1,2-a]pyridine moiety were synthesized and their herbicidal activities were examined. The activities were affected dramatically by the substituents on the imidazo[1,2-a]pyridine ring, and good substituents to enhance the herbicidal activity were a cyano group at the 3-position and a chlorine atom at the 6-position. Among the compounds, n-propyl 2-[4-(6-chloro-3-cyano-2-imidazo[1,2-a]pyridinyloxy)phenoxy]propionate(Iq) was most active against gramineous weeds and the activity was comparable to that of the commercial herbicide fluazifop-butyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号