首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dihydrodipicolinate synthase (DHDPS) is a key enzyme in lysine biosynthesis and a potential antibiotic target. The enzyme catalyses the condensation of (S)-aspartate semi-aldehyde (ASA) and pyruvate to form dihydrodipicolinate. Constrained diketopimelic acid derivatives have been designed as mimics of the acyclic enzyme-bound condensation product of ASA and pyruvate. Several of the compounds are shown to be active, slow-binding inhibitors with improved inhibition of DHDPS.  相似文献   

2.
beta-Difluoromethyl-beta-alanine (3-amino-4,4-difluorobutanoic acid) is a potent in vitro and in vivo inhibitor of GABA-T. The rate of inhibition of GABA-T is concentration- and time-dependent. The inactivation is active-site directed. No reactive species escapes from the active site before reacting with the enzyme. The inhibition is irreversible and stereospecific. The use of beta-2H-beta-difluoromethyl-beta-alanine results in a marked primary isotope effect in vitro and in vivo. The use of differently substituted dihalogeno derivatives of beta-alanine suggests that the rate of inhibition is dependent on the nature and position of the leaving group. The mechanism of inhibition is discussed on the basis of spectral changes.  相似文献   

3.
Porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA), an essential step in tetrapyrrole biosynthesis. 4-Oxosebacic acid (4-OSA) and 4,7-dioxosebacic acid (4,7-DOSA) are bisubstrate reaction intermediate analogs for PBGS. We show that 4-OSA is an active site-directed irreversible inhibitor for Escherichia coli PBGS, whereas human, pea, Pseudomonas aeruginosa, and Bradyrhizobium japonicum PBGS are insensitive to inhibition by 4-OSA. Some variants of human PBGS (engineered to resemble E. coli PBGS) have increased sensitivity to inactivation by 4-OSA, suggesting a structural basis for the specificity. The specificity of 4-OSA as a PBGS inhibitor is significantly narrower than that of 4,7-DOSA. Comparison of the crystal structures for E. coli PBGS inactivated by 4-OSA versus 4,7-DOSA shows significant variation in the half of the inhibitor that mimics the second substrate molecule (A-side ALA). Compensatory changes occur in the structure of the active site lid, which suggests that similar changes normally occur to accommodate numerous hybridization changes that must occur at C3 of A-side ALA during the PBGS-catalyzed reaction. A comparison of these with other PBGS structures identifies highly conserved active site water molecules, which are isolated from bulk solvent and implicated as proton acceptors in the PBGS-catalyzed reaction.  相似文献   

4.
Molecular cloning of wheat dihydrodipicolinate synthase   总被引:7,自引:0,他引:7  
  相似文献   

5.
6.
7.
R R Rando 《Biochemistry》1974,13(19):3859-3863
  相似文献   

8.
The inhibition of enzyme formation by amino acid analogues   总被引:30,自引:14,他引:16  
  相似文献   

9.
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme specific to lysine biosynthesis in plants, was purified from maize (Zea mays L.) cell suspension cultures and leaves. The subunit molecular weight of maize dihydrodipicolinate synthase was estimated to be 38,000 based on SDS-PAGE. The condensation of l-aspartate semialdehyde and pyruvate by highly purified dihydrodipicolinate synthase exhibited kinetics characteristic of a Ping Pong Bi Bi ordered reaction in which pyruvate binds first to the enzyme. Substrate inhibition evident at higher concentrations of l-aspartate semialdehyde was partially alleviated by increasing concentrations of pyruvate. Pyruvate binding exhibited cooperativity with an apparent number of 2 and 1.86 millimolar concentration required for 50% of maximal activity. The Km for aspartate semialdehyde was estimated to be 0.6 millimolar concentration. Lysine was an allosteric cooperative inhibitor of dihydrodipicolinate synthase with an estimated Hill number of 4 and 23 micromolar concentration required for 50% inhibition. The physical and kinetic data are consistent with a homotetramer model for the native enzyme.  相似文献   

10.
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-β-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-β-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-α-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-α-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-β-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-β-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase.  相似文献   

11.
In plants, the rate-limiting step in the pathway for lysine synthesis is catalyzed by the enzyme dihydrodipicolinate synthase (DS), which is encoded by the DapA gene. We previously cloned the soybean (Glycine max cv. Century) DapA gene in Escherichia coli to express functional soybean DS protein. Like the wild-type soybean DS enzyme, the DS activity encoded by the cloned gene was extremely sensitive to feedback inhibition by micromolar concentrations of lysine. Three mutants of the soybean DapA gene were constructed using PCR: one with a single amino acid substitution at codon 104, another with a single amino acid substitution at codon 112, and a mutant containing both modifications. When expressed in E. coli, the mutant DS activities were insensitive to lysine at concentrations up to 1 mM.  相似文献   

12.
Heterocyclic inhibitors of dihydrodipicolinate synthase are not competitive   总被引:1,自引:0,他引:1  
A series of piperidine- and pyridine-2,6-dicarboxylate derivatives has been evaluated as potential inhibitors of dihydrodipicolinate synthase (DHDPS). The compounds were designed with oxygen functionality at the C-4 position in order to mimic the putative enzyme product HTHDP. Most compounds displayed weak-moderate inhibition of DHDPS. Additionally, the most potent inhibitors were shown not to be competitive, indicating they do not bind at the active site. Discrepancies between the two common assay systems-the imidazole assay and the coupled assay-were observed which are attributed to inherent problems in the imidazole assay, leading to artefactually low K(i) measurements.  相似文献   

13.
14.
15.
16.
Dihydrodipicolinate synthase (DHDPS) catalyses the first reaction of the (S)-lysine biosynthesis pathway in bacteria and plants. The hypothetical gene for dihydrodipicolinate synthase (dapA) of Thermoanaerobacter tengcongensis was found in a cluster containing several genes of the diaminopimelate lysine–synthesis pathway. The dapA gene was cloned in Escherichia coli, DHDPS was subsequently produced and purified to homogeneity. The T. tengcongensis DHDPS was found to be thermostable (T 0.5 = 3 h at 90°C). The specific condensation of pyruvate and (S)-aspartate-β -semialdehyde was catalyzed optimally at 80°C at pH 8.0. Enzyme kinetics were determined at 60°C, as close as possible to in vivo conditions. The established kinetic parameters were in the same range as for example E. coli dihydrodipicolinate synthase. The specific activity of the T. tengcongensis DHDPS was relatively high even at 30°C. Like most dihydrodipicolinate synthases known at present, the DHDPS of T. tengcongensis seems to be a tetramer. A structural model reveals that the active site is well conserved. The binding site of the allosteric inhibitor lysine appears not to be conserved, which agrees with the fact that the DHDPS of T. tengcongensis is not inhibited by lysine under physiological conditions.  相似文献   

17.
Girish TS  Sharma E  Gopal B 《FEBS letters》2008,582(19):2923-2930
Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.  相似文献   

18.
Dihydrodipicolinate synthase, the first enzyme unique to lysine biosynthesis in higher plants, was purified about 5100-fold from suspension-cultured cells of wheat (Triticum aestivum var Chinese Spring). The synthase has an average molecular weight of 123,000 as determined by gel filtration and exhibited maximum activity at pH 8.0. The kinetics of the condensation reaction are compatible with a “Ping Pong” mechanism in which pyruvate reacts first with the enzyme to form a Schiff base. Pyruvate and l-aspartic-β-semialdehyde (ASA) have respective Km values of 11.76 and 0.80 millimolar. Allosteric inhibition was observed with increasing concentrations of l-lysine and its structural analogs, including threo-4-hydroxy-l-lysine and S-(2-aminoethyl)-l-cysteine, with respective I0.5 values of 51, 141, and 288 micromolar. These amino acids were competitive inhibitors with respect to ASA and noncompetitive inhibitors with respect to pyruvate. We propose that the binding site for lysine overlaps with the ASA binding site, possibly by an attachment of the common alanyl moiety. The wheat enzyme was inhibited by Zn2+, Cd2+, and Hg2+ and also by sulfhydryl inhibitors, p-(hydroxymercuri)benzoic acid and p-chloromercuribenzenesulfonic acid.  相似文献   

19.
The inactivation of phosphorylase phosphatase by fluorophosphate is described. The inactivation is dependent upon time and concentration of fluorophosphate and cannot be reversed by removal of fluorophosphate from the enzyme. Acid hydrolysis of fluorophosphate destroys the capacity for inhibition. The inactivation exhibits saturation kinetics. A dissociation constant for the enzyme-fluorophosphate complex and a rate constant for the reaction were calculated to be 5.5 × 10?3 M and 0.22 min?1, respectively. A competitive inhibitor, phosphate, protects the enzyme against inactivation. The data are consistent with an irreversible covalent modification of the active site of phosphorylase phosphatase by fluorophosphate.  相似文献   

20.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号