首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Maintainable, highly embryogenic suspension cultures of a wild relative of cotton (Gossypium klotzschianum Anderss.) have been obtained. Callus with no apparent organization was used to establish the liquid culture. Callus growth conditions as well as suspension medium composition were optimized. A visual selection scheme was beneficial for the maintenance of the embryogenic suspension. These liquid cultures have been maintained for over 10 mo. with no loss in embryogenic capacity. The somatic embryos developed after transfer of the embryogenic tissues to a hormone-free liquid medium. Salaries and research support were provided by State and Federal funds appropriated to OSU-OARDC. This is journal article No. 71-87.  相似文献   

2.
A simple and efficient method for high frequency somatic embryogenesis and plant regeneration from hypocotyl-derived cultures and suspension cultures of Gossypium klotzschianum Anderss, a wild, diploid species of cotton is described here. Embryogenic cultures were induced from hypocotyl sections on MSB medium with 0.9 M 2,4-D and 2.32 M kinetin. MSB medium containing 0.045 M 2,4-D, 0.93 M kinetin, 2.46 M IBA promoted embryogenic culture proliferation and embryo development. Suspension cultures with 0.23 M 2,4-D and 0.93 M kinetin also produced many embryos. Somatic embryos cultured on MSB medium with PGRs produced secondary embryos, and embryos developed into normal plantlets on PGR-free MSB medium. Regenerated plantlets were transferred onto the quarter-strength MSB medium with 0.5% active charcoal to avoid recallusing. Hypocotyls were better than cotyledons for culture induction and plant regeneration. 2,4-D and kinetin were essential for culture induction and maintenance.  相似文献   

3.
Summary Embryogenic callus was initiated from radicles of mature embryos removed from imbibed seeds (24 h). Embryogenic and other nonembryogenic types of callus proliferated on a modified half-strength Murashige-Skoog medium (MS) basal medium (BM) supplemented withmyo-inositol, casein hydrolysate (CH), L-glutamine (gln) and growth regulators kinetin (KN), N6-benzyladenine (BAP) each (20×10−6 M), 2,4-dichlorophenoxyacetic acid (2,4-D) (50×10−6 M) Embryogenic callus bearing suspensor-like cells in a mucilaginous gel matrix was isolated and maintained by subculture every 10 to 12 days on BM with KN, BAP each (2×10−6 M) and 2,4-D (5×10−6 M). Somatic embryos developed spontaneously from the callus on this medium at 23±1° C. Closer examination revealed that numerous polyembryonic clusters, comprised of elongated cells (suspensors) and small dense cells with large nuclei (somatic embryos), occurred in the viscous gel. When this enriched embryonal-suspensor mass was subcultured to low 2,4-D (1×10−6 M), globular embryos developed by 40 to 60 days. Upon transfer to a liquid medium without growth regulators, the embryos elongated and developed cotyledons and shoots with needles. Plantlet development was completed by 30 days in a basal medium without CH, gln and growth regulators. The total culture time was 150 days. Approximately 40±10 embryos were formed from 500 mg of initial callus. Somatic embryogenesis became aberrant if embryos remained attached to the callus mass and were not subcultured within 10 to 12 days according to the described protocol. Somatic embryos were encapsulated in an alginate gel and stored at 4° C for nearly two months without visible adverse effects on viability. Editor's Statement This paper presents advances in the in vitro regeneration of a commercially useful plant species from stored seeds. In addition, data is presented on short-term storage of the plantlets, and long-term proliferation of the embryonal mass in vitro.  相似文献   

4.
Summary The storage protein content of somatic embryos of Gossypium hirsutum L. cv. Coker 201 was determined using extinction level, antigen/antibody association detection methods. Mature storage protein was first detected in early globular-stage somatic embryos at a total concentration of 0.36% of the embryo protein mass. Tulip-stage and mature somatic embryos were comprised of 3.0% and 1.3% mature storage protein, respectively. Maximum storage protein synthesis was found to occur during early globular- and early heart-stages. During this period of development, significant levels of protein precursors were found also to accumulate. The pattern of storage protein synthesis, processing and accumulation paralleled the pattern that has been reported for the zygotic system, although somatic embryos accumulate storage protein at much earlier stages and to a lesser degree. The possibility of using complex biochemical pathways to monitor embryogenic systems in vitro is discussed.  相似文献   

5.
To obtain a reproducible efficient procedure for regeneration of rice plants through somatic embryogenesis from callus four published methods of callus induction and regeneration were compared. Callus was initiated from mature embryos of the Japonica cultivar Taipei 309 of rice (Oryza sativa L.). The number, mass and morphology of the callus formed on the scutellum were dependent on the medium used. A limited humidity and an optimal aeration of the culture vessels enhanced the frequency of embryogenesis and plant regeneration. A method described by Poonsapaya et al. (1989) was found to be the most efficient and was slightly modified. As a result 98% of the T309 embryos formed callus, of which 63% regenerated into plants. Each callus yielded an average of 6 plants. Plant morphology, fertility and seed set of the regenerants were found to be normal.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - IAA 3-indole-acetic acid - BA 6-benzyladeninepurine - S.E.M. standard error of mean  相似文献   

6.
Asymmetric somatic hybrids were obtained between Gossypium hirsutum Coker 201 and wild cotton G. klozschianum Anderss. An investigation on the effect of ultraviolet (UV) irradiation on donor protoplasts was carried out, and the lethal dose was determined to be 38.7 J cm−2. We firstly screened the putative hybrids by the color of the calli produced, followed by morphological, cytological, and molecular analysis of putative hybrid plants. Most regenerated plants derived from fused protoplasts displayed a recipient-like morphology, while some showed an intermediate phenotype between Coker 201 and G. klozschianum. Chromosome numbers in these somatic hybrids ranged from 54 to 74. The hybrids were verified by random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR). Absence or co-existence of parents’ genome DNA fragments was identified through molecular analysis. The heredity of cytoplasm was investigated by cleaved amplified polymorphic sequence (CAPS) analysis using mitochondrial and chloroplast universal primer pairs. The results indicated that recombination and rearrangements might have occurred in some regions of mitochondria (mt) and chloroplast (cp) DNA. To our knowledge, this is the first report about asymmetric protoplast fusion in cotton, and the hybrids obtained would be useful for breeding programs.  相似文献   

7.
Summary Tissue culture methods were developed for reproducible induction and maintenance of embryogenic (E) callus established from developmentally mature embryo explants of bread wheat (Triticum aestivum) and grain sorghum (Sorghum bicolor). Embryogenic callus was obtained by culturing seeds and mature embryos of wheat on Linsmaier and Skoog’s (LS) medium containing 5 or 2 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, and for sorghum mature embryos on LS medium containing 2 mg/1 2,4-D plus 0.5 mg/liter kinetin. Plant regeneration from E callus was achieved for several months and quantified on a fresh-weight basis of E callus. Phenotypically normal plants were regenerated from E callus cultured on LS medium supplemented with 0.1 mg/liter IAA plus 0.5 mg/liter benzyladenine (BA) for wheat and 1.0 mg/liter IAA plus 0.5 mg/1BA for sorghum. Wheat research was funded by the United States Agency for International Development, Washington, DC, cooperative agreement DNA-4137-A-00-4-53-00. Sorghum research was supported by the Gas Research Institute, Chicago, IL, contract 5084-260-0973. Expert technical asistance was provided by Nitschka S. ter Kuile, Barbara J. Ashton, Laurie Osborne, Erin Scott, and Kathleen M. Petersen.  相似文献   

8.
Direct somatic embryogenesis from mature embryos of sandalwood   总被引:7,自引:0,他引:7  
Plants were regenerated from mature zygotic embryos of sandalwood (Santalum album L.) through direct somatic embryogenesis. Somatic embryos were formed directly without any intervening callus phase on zygotic embryos plated on Murashige and Skoog (MS) medium containing thidiazuron or benzylaminopurine. Individual somatic embryos were then isolated and transferred to MS medium without cytokinin on which they formed secondary embryos in repetitive cycles with or without the addition of indole acetic acid to the medium. Conversion of somatic embryos into plantlets was achieved by isolating somatic embryos with distinct cotyledons and reculturing them onto half-strength MS medium with GA3 (1.4 M). Recovered plantlets were acclimatised and grown in the greenhouse. This is the first report on in vitro regeneration via direct somatic embryogenesis of sandalwood.  相似文献   

9.
Summary We describe a tissue culture procedure for somatic embryogenesis and plantlet regeneration in cotton (Gossypium hirsutum L. cv. Coker 312). Callused explants or individual globular embryos were transferred to basal media to induce somatic embryogenesis. To determine characteristic early indicators of successful germination and conversion, we identified six types of embryos that developed on basal media. Two of the six embryo types, designated as tulip-shaped and trumpet-shaped, could undergo conversion in preliminary tests, whereas the others had little or no developmental potential. Several media treatments designed to enhance the maturation of globular somatic embryos failed to increase the fraction of embryos which matured to form recoverable types. In efforts to improve plantlet recovery, tulip-shaped embryos were used in limited trials to contrast the effects of chemical and physical desiccation treatments on germination and conversion. The selective use of tulip-shaped somatic embryos, coupled with partial desiccation, seems to have augmented plant recovery. Growth habit, flowering, seed set, and lint production of most of the regenerated plants were comparable to seed-derived plants grown under the same conditions. Partial research support was provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University.  相似文献   

10.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

11.
海边香豌豆胚性愈伤组织的诱导和体细胞胚发生   总被引:2,自引:0,他引:2  
将生长14d的海边香豌豆(Lathyrus maritimus(L.)Bigel)无菌苗下胚轴切成0.5cm左右的片段,置于含有1mg/L2,4-D,0.5mg/L BA和0.5%NaCl的MS培养基中,28d后诱导出胚性愈伤组织。将其转入含有适当浓度2,4-D的MS培养基上,又28d后可得到大量球形胚和心形胚以及极少量鱼雷胚和子叶胚。诱导体细胞胚适合的2,4-D浓度为0.5mg/L。较高浓度的2  相似文献   

12.
Maintainable, highly embryogenic suspension cultures of cotton (Gossypium hirsutum L. cv. Coker 310) have been obtained. Callus cultures were initiated from cotyledonary tissues from aseptically-germinated seedlings. To establish the suspension cultures, callus tissue was placed in a liquid medium containing either 0.5 mg/l picloram or 0.1 mg/l 2,4-dichlorophenoxyacetic acid. For proliferation of the embryogenic suspension, 5 mg/l of 2,4-dichlorophenoxyacetic acid was used. Embryo development took place when the embryogenic tissue was transferred to an auxin-free liquid medium containing 15 mM glutamine. Early embryo development was fairly synchronous and large numbers of somatic embryos were produced. Regenerated plants were fertile and smaller than seed-derived plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indole-3-acetic acid  相似文献   

13.
An embryogenic suspension culture of Zea mays, genotype 4C1, was obtained from friable callus that was cultured on solid medium and had been obtained from zygotic embryos. The suspension contained non-dividing elongated cells, clusters of dividing isodiametric cells, and globular, ovoid, and polar stages of somatic embryos. The single somatic embryos were blocked in shoot meristem formation: when transferred to regeneration medium they developed a root and, at the shoot side, a green cap with meristematic cells, but a scutellum and leaf primordia were not formed. In medium containing 2,4-dichlorophenoxy acetic acid, somatic embryos formed embryogenic callus aggregates, consisting of globular stage somatic embryos attached to each other via undifferentiated callus cells. These somatic embryos developed into mature embryos with the zygotic histological characteristics, such as scutellum and leaf primordia, in maturation medium, and then regenerated into plants in regeneration medium. By omitting the maturation phase, regeneration occurred via organogenesis. Polyembryos, i. e. embryos attached to each other without callus tissue in between, behaved as single somatic embryos. It is concluded that the attached callus tissue provides a factor that stimulates scutellum and leaf primordia formation.Abbreviations CMM callus maintenance medium - 2,4D 2,4-dichlorophenoxy acetic acid - PCV packed cell volume - MS Murashige and Skoog medium  相似文献   

14.
Summary The insecticidal effectiveness of a δ-endotoxin Cry protein from Bacillus thuringiensis in non-regenerable callus of a commercial Gossypium hirsutum L. variety was investigated. Two transgenic callus types were generated. The first callus type harbored the cry1A(c) gene and the hygromycin B phosphotransferase hpt selectable marker gene. The second callus type, the transgenic control, carried the marker genes β-glucuronidase (GUS) and hpt. Growth and survival rates of three major cotton moth species, Pectinophora gossypiella, Helicoverpa armigera, and Spodoptera littoralis, were examined with aseptic neonates reared on callus. Normal larval development occurred in all species supplied with non-transgenic callus, but insects died, or their growth was severely restricted, when reared on transgenic callus harvested from hygromycin B-supplemented medium. Development of larvae on transgenic control and on non-transgenic callus became very much alike after the transgenic control tissue had been subcultured on a hygromyein B-free medium for about 100 d prior to the insect-callus bioassay. Accordingly, for detection of Bt toxin activity without the interference of the influence of hygromycin B on insects, cry1A(c) callus was infested with insects after it had been propagated for more than 100 d on a medium free of the antibiotic. Under these experimental conditions all P. gossypiella and H. armigera, and most S. littoralis neonates died, and the growth (e.g., weight increment) of S. littoralis survivors was markedly impeded by cry1A(c) callus. Three new findings emerge from this study: first, P. gossypiella, a pest feeding in the field on bolls only, can be grown in vitro on cotton callus; second, in a host which is recalcitrant in terms of plant regeneration, the biological potency of an insectdetrimental transgene can nevertheless be evaluated by generating a transgenic host callus and conducting in vitro transgenic callus-insect assays; and third, our results suggest that hygromycin B is toxic to lepidopteran larvae.  相似文献   

15.
Low dosages of chloramphenicol (25-50 micrograms/ml) brought about a 2-4-fold stimulation of acid phosphatase activity in 48 h-germinated cotton (Gossypium hirsutum) embryos. However, at high concentrations of chloramphenicol (100-1000 micrograms/ml), there was a progressive decline in enzyme activity. The stimulatory effect of the drug on acid phosphatase activity was relatively specific, since no significant stimulation of activities of proteinase, deoxyribonuclease, ribonuclease, o-diphenolase and peroxidase was observed in germinating cotton embryos. Chloramphenicol, however, did promote the activities of isocitric lyase and alkaline phosphatase. Sephadex G-200 chromatography of the enzyme fraction revealed high (230 000)- and low (106 000)-molecular-weight multiple forms of acid phosphatase in the chloramphenicol-treated embryos, in contrast with a single molecular form (mol.wt. 106 000) in the untreated embryos. Thus the treatment of cotton embryos with chloramphenicol induced both a qualitative and a quantitative change in the acid phosphatase activity. Chloramphenicol-stimulated acid phosphatase activity was strongly inhibited when Pi was included in the germination medium. However, the control embryos showed less pronounced inhibition of enzyme activity in presence of Pi ions.  相似文献   

16.
We report an in vitro selection method that has led to isolation of Fusarium wilt and Alternaria leaf spot disease-tolerant plantlets in cotton (Gossypium hirsutum L. cv. SVPR2). Embryogenic callus was isolated from hypocotyl explants of cotton cultured on 5–50% Fusarium oxysporum culture filtrate-fortified callus induction medium. Somatic embryos tolerant to fungal culture filtrate (FCF) were isolated from this embryogenic callus on somatic embryo regeneration medium fortified with 40% FCF. Sixteen plantlets were selected as FCF-tolerant from 34 somatic embryos tested, which corresponds to about 47% success rate. The FCF-tolerant plants were analyzed for disease tolerance by challenging them with spores of F. oxysporum and Alternaria macrospora. Four plants were selected as F. oxysporum tolerant from a total of 24 plants tested. The selected plants showed an enhanced survival rate compared with the control when they were grown in earthen pots inoculated with 1 × 105 spores/mL of F. oxysporum. From the FCF-tolerant plants, another nine randomly selected plantlets were challenged with spores of A. macrospora in order to test their tolerance to Alternaria leaf spot disease. The number of lesions per leaf significantly decreased from 8.2 to 0.9 and the lesion lengths were also reduced from 2.8 to 1.2 mm per leaf spot in these plants. Electrophoresis analysis of extracellular proteins from the FCF-tolerant plants showed enhanced secretion of proteins in the range of 24–36 kDa. Isozyme analysis by of FCF-tolerant plants by using native gels showed the presence of chitinase. Quantitative analysis showed that there was 13-fold increase in a chitinase activity in the selected FCF-tolerant plants compared to the control plants. Our results show that over-expression of chitinase enzyme leads to enhanced disease resistance against F. oxysporum and A. macrospora.  相似文献   

17.
Somatic embryogenesis is a useful tool for gene transfer and propagation of plants. AGAMOUS-LIKE15 (AGL15) promotes somatic embryogenesis in many plant species. In this study, three homologous AGL15 genes were isolated from Gossypium hirsutum L., namely GhAGL15-1, GhAGL15-3, and GhAGL15-4. Their putative proteins contained a highly conserved MADS-box DNA-binding domain and a less conserved K domain. Phylogenetic analysis suggested that the three GhAGL15s clustered most closely with AGL15 proteins in other plants. Subcellular location analyses revealed that three GhAGL15s were localized in the nucleus. Furthermore, their expression levels increased following embryogenic callus induction, but sharply decreased during the embryoid stage. GhAGL15-1 and GhAGL15-3 were significantly induced by 2,4-D and kinetin, whereas GhAGL15-4 was only responsive to 2,4-D treatment. Over-expression of the three GhAGL15s in cotton callus improved callus quality and significantly increased the embryogenic callus formation rate, while GhAGL15-4 had the highest positive effect on the embryogenic callus formation rate (an increase from 38.1 to 65.2 %). These results suggest that over-expression of GhAGL15s enhances embryogenic potential of transgenic calli. Therefore, spatiotemporal manipulation of GhAGL15s expression may prove valuable in improving cotton transformation efficiency.  相似文献   

18.
Mature zygotic embryos of ginseng (Panax ginseng C. A. Meyer) were germinated on a Murashige and Skoog medium lacking growth regulators. However, when the zygotic embryos were cultured on MS medium containing increased levels of macrosalts (NH4NO3, KNO3, KH2PO4, MgSO4, or CaCl2) to result is a mild salt stress, growth of zygotic embryos was strongly suppressed and eventually browning occurred. Somatic embryos or embryogenic calli were formed directly from these abnormal stressed zygotic embryos. Cotyledons were the most competent tissue for somatic embryo production. The highest frequency of somatic embryo formation (56.3%) was observed on medium containing 61.8 mM of NH4NO3. The highest frequency of somatic embryo formation by five different macrosalt treatments occurred in the following order: NH4NO3> KNO3> KH2PO4> MgSO4> CaCl2. Somatic embryos were regenerated into plants with a shoot and root, and the plants survived on soil in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Zoospores of Laminaria at the stage of zoospore germination fixed to glass slides were irradiated by γ-rays in doses of 50, 100, or 250 Gy; or treated with colchicine at a concentration of 4 × 10?5% for 5 days. The cultivation was conducted in vessels with seawater at a temperature of 12°N and illumination of 4000 lux for one month. Once a day, from day 22 to day 30, the temperature was reduced to 0°N for 12 h. As a result, in experimental samples gametophytes appeared that did not form gametangia; these appeared by the third day of cultivation, as plaques up to 2 cm in diameter (1–2 plaques per slide). In the same culture we found structures (1–2 per slide) consisting of strictly radially arranged rows of somatic cells attached to the slides. Later, these disks transformed into cones up to 0.5 cm in diameter. We recorded the development of a single-layered sporophyte of Laminaria arising from the center of such a cone.  相似文献   

20.
Successful regeneration of cotton (Gossypium hirsutum L.) plants from cryopreserved embryogenic callus and cell suspension cultures is described. The cryoprotectant mixture consisting of a modified Murashige and Skoog (1962) medium with sucrose (5% w/v), DMSO (5% v/v) and glycerol (5% v/v) gave the highest survival rate (70%) from cell suspension cultures cryopreserved in liquid nitrogen after slow cooling (0.5 to 1.0°C/min). A cooling rate of 0.5°C/min provided a satisfactory recovery rate (30%) from cryopreserved embryogenic callus cultures and was superior to a cooling rate of 1°C/min. Regenerated plants from cell suspension and embryogenic callus cultures cryopreserved for more than four years exhibited normal morphology, growth and boll set upon transfer to soil.Abbreviations DMSO dimethylsulfoxide - MS Murashige and Skoog (1962) - MMS modified MS - NAA -naphthaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号