首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenol sulfotransferases (SULT1s, EC 2.8.2.1) catalyze sulfuryl group transfer from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to the hydroxyl oxygen of aromatic acceptor substrates. Previous work with the bovine SULT1A1 has utilized the highly fluorescent substrate 7-hydroxycoumarin (7-HC, umbelliferone) as an acceptor substrate [Biochem. Biophys. Res. Commun. 261 (1999) 815]. Here we report that adenosine-3',5'-bisphosphate (PAP)-dependent binding of 7-HC to bSULT1A1 can be observed due to the appearance of a 400-420-nm shoulder in the emission spectrum, using an excitation wavelength of 280 nm. This emission was observed by placing 7-HC in ethanol, which is consistent with bSULT1A1 phenol binding site hydrophobicity. Titrations with 7-HC indicate a K(d) for 7-HC of 0.58 microM and substoichiometric binding to the homodimeric enzyme. The bSULT1A1:PAP:7-HC complex could be disrupted with pentachlorophenol (PCP), titrations with which indicated 0.5 equivalents per enzyme subunit. Titrations of enzyme plus 7-HC with PAP also indicated 0.5 equivalents per enzyme subunit. These results suggest a model of homodimeric bSULT1A1 in which subunit interactions favor half-site reactivity in the formation of a dead end complex.  相似文献   

2.
Phenol sulfotransferases (SULTs), which normally bind 3'-phosphoadenosine-5'-phosphosulfate as the donor substrate, are inhibited by CoA and its thioesters. Here, we report that inhibition of bovine SULT1A1 by CoA is time-dependent at neutral pH under non-reducing conditions. The rates of inactivation by CoA indicate an initial reversible SULT:CoA complex with a dissociation constant of 5.7 microM and an inactivation rate constant of 0.07 min(-1). Titrations with CoA and prolonged incubations reveal that inactivation of the dimeric enzyme is stoichiometric, consistent with the observation of complete conversion of the protein to a slightly decreased electrophoretic mobility. Both activity and normal electrophoretic migration are restored by 2-mercaptoethanol. Mutagenesis demonstrated that Cys168 is the site of CoA adduction, and a consistent model was constructed that reveals a new SULT molecular dynamic. Cysteine reaction kinetics with Ellman's reagent revealed a PAPS-induced structural change consistent with the model that accounts for binding of CoA.  相似文献   

3.
In order to understand the mechanisms of ligand binding and the interaction between the ligand and the bovine phenol sulfotransferase, (bSULT1A1, EC 2.8.2.1) a three-dimensional (3D) model of the bSULT1A1 is generated based on the crystal structure of the estrogen sulfotransferase (PDB code 1AQU) by using the InsightII/Homology module. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D and ProStat, which show that the refined model is reliable. With this model, a flexible docking study is performed and the results indicate that 3-phosphoadenosine-5- phosphosulfate (PAPS) is a more preferred ligand than coenzyme A (CoA), and that His108 forms hydrogen bond with PAPS, which is in good agreement with the experimental results. From these docking studies, we also suggest that Phe255, Phe24 and Tyr169 in bSULT1A1 are three important determinant residues in binding as they have strong van-der-Waals contacts with the ligand. The hydrogen–bonding interactions also play an important role for the stability of the complex. Our results may be helpful for further experimental investigations.Figure The final 3D-structure of bSULT1A1. The structure is obtained by energy minimizing an average conformation over the last 100 ps of MD simulation. The -helix is represented in red and the -sheet in yellow.  相似文献   

4.
Previous work with the bovine phenol sulfotransferase (bSULT1A1, EC ) demonstrated inhibition by CoA that was competitive with respect to the sulfuryl donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) (Leach, M., Cameron, E., Fite, N., Stassinopoulos, J., Palmreuter, N., and Beckmann, J. D. (1999) Biochem. Biophys. Res. Commun. 261, 815-819). Here we report that long chain acyl-CoAs are more potent inhibitors of bSULT1A1 and also of human dopamine sulfotransferase (SULT1A3) when compared with unesterified CoA and short chain-length acyl-CoAs. A complex pattern of inhibition was revealed by systematic variation of palmitoyl-CoA, PAPS, and 7-hydroxycoumarin, the acceptor substrate. Convex plots of apparent K(m)/V(max) versus [palmitoyl-CoA] were adequately modeled using an ordered rapid equilibrium scheme with PAPS as the leading substrate and by accounting for the possible binding of two equivalents of inhibitor to the dimeric enzyme. Interestingly, the first K(i) of 2-3 microm was followed by a second K(i) of only 0.01-0.05 microm, suggesting that positive subunit cooperativity enhances binding of long chain acyl-CoAs to this sulfotransferase. Simultaneous interaction of palmitoyl-CoA with both the nucleotide and phenol binding sites is suggested by two experiments. First, the acyl-CoA displaced 7-hydroxycoumarin from the highly fluorescent bSULT1A1.PAP.7-HC complex in a cooperative manner. Second, palmitoyl-CoA prevented the quenching of bSULT1A1 fluorescence observed with pentachlorophenol. Finally, titrations of bSULT1A1-pentachlorophenol complex with palmitoyl-CoA caused the return of protein fluorescence, and the binding of palmitoyl-CoA was highly cooperative (Hill constant of 1.9). Overall, these results suggest a model of sulfotransferase inhibition in which the 3'-phosphoadenosine-5'-diphosphate moiety of CoA docks to the PAPS domain, and the acyl-pantetheine group docks to the hydrophobic phenol binding domain.  相似文献   

5.
《Gene》1996,174(2):221-224
Phenol sulfotransferases (PST) esterify hydroxylated aromatic compounds with sulfate, and therefore play a role in the metabolism of xenobiotics. In this investigation, a bovine PST gene of 2372 bp was amplified from genomic DNA. Sequence overlap with the cognate cDNA revealed seven exons, with all introns containing GT/AG splicing donor/acceptor sites. This product was subcloned into an SV40-based expression vector and transfected into WI-26 human lung fibroblasts. Immunoblot analyses revealed production of the anticipated 32-kDa protein, and the active enzyme displayed steady-state kinetic properties consistent with the enzyme characterized in bovine lung (apparent Km=6.5 μM for 2-naphthol).  相似文献   

6.
7.
Continuous fluorometric assay of phenol sulfotransferase.   总被引:2,自引:0,他引:2  
Phenol sulfotransferases (EC 2.8.2.1) catalyze the sulfation of the acceptor hydroxyl group using 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the donor substrate. Previous assays of these enzymes, which exhibit varied acceptor substrate specificities, have required termination of the catalysis followed by isolation and quantitation of formed sulfate ester. In this report, the sulfation of the fluorescent compound, resorufin, is investigated. Reaction of PAPS with resorufin, catalyzed by bovine lung phenol sulfotransferase, bleaches the emission of this acceptor at the pH of the reaction (pH 6.4 optimum). It is thereby possible to continuously record the sulfation reaction. Analysis of single progress curves by integrated replot can be used to determine the initial velocities and also indicates the formation of a product inhibitor, probably resorufin sulfate ester, with Ki less than Km. Sensitivity of the reaction is less than 1 pmol/min. The maximal rate of resorufin sulfation by the bovine lung enzyme is estimated at 57 nmol/mg/min, which is 10% of the rate with an optimal substrate 2-naphthol. This assay may be most sensitive for phenol sulfotransferases with optimal activities at greater than pH 6, due to the acid-base properties of resorufin (pK alpha 6), which becomes nonfluorescent upon protonation.  相似文献   

8.
The substrate specificity of the thermostable phenol sulfotransferase (PST) from primary cultures of brain microvessel endothelial cell monolayers was characterized. Selected catecholamines, catecholamine metabolites, and p-nitrophenol at 5, 50, and 500 M were used as substrates in PST assays of cytosol extracts. Endogenous catecholamines, epinephrine, norepinephrine, and dopamine, exhibited no detectable activity as substrates (500 M) compared to 500 M p-nitrophenol as substrate (1.8 pmol/mg/min specific activity) for the PST. In contrast, 500 M of either deaminated or 3-O-methylated metabolites of catecholamines exhibited intermediate (1.0 pmol/mg/min specific activity) to low (0.2 pmol/mg/min specific activity) activity, respectively, as substrates compared to p-nitrophenol as substrate for the PST. Additionally, 500 M of metabolites of catecholamines that were both deaminated and 3-0-methylated exhibited high activity (>3.0 pmol/mg/min specific activity) as substrates compared top-nitrophenol as substrate for the PST. Qualitatively similar results were observed at lower substrate concentrations. Therefore, results from this study suggest a potential role for PST as part of the enzymatic blood-brain barrier in regulating transendothelial passage of endogenous catecholamines between the blood and the brain.  相似文献   

9.
One conjugative pathway for the inactivation of endogenous and exogenous hydroxylated aromatic compounds is catalyzed by phenol (aryl) sulfotransferases (PSTs), which esterify phenolic acceptors with sulfate. The tracheobronchial epithelium is commonly exposed to phenolic drugs and pollutants, and metabolic sulfation and PST activity in this tissue have been previously demonstrated. To determine what factors may control PST expression, extracts of serum-free, growth factor-supplemented cultures of bovine bronchial epithelial cells were assayed for PST activity and PST antigen. The most significant finding was dose-dependent, apparent stimulated expression by hydrocortisone (EC50 = 4 nM, maximal stimulation at 20 nM). Time-course experiments, however, revealed progressive loss of PST in the absence of corticosteroid. After decay of extant PST in steroid-free medium, hydrocortisone reinduced the expression of PST three to fivefold. Western blots using mouse anti-bovine PST revealed corresponding increases in 32 kDa PST protein levels in response to hydrocortisone. Steady state kinetic analyses indicated apparent Km values of 1—3 μM for 2-naphthol regardless of culture conditions. These results suggest that detoxification of phenolic compounds by sulfation may be regulated by corticosteroids.  相似文献   

10.
11.
The fluorescence quantum yield of NADPH is enhanced in its complex with 6-phospho-gluconate dehydrogenase, and a further enhancement in the presence of excess 6-phospho-gluconate shows that an abortive ternary complex is formed. There is marked energy transfer from aromatic residues in the enzyme to NADPH in the complexes, as indicated by an excitation maximum at 280 nm in the fluorescence excitation spectrum of the complex. The coenzyme fluorescence enhancement has been used to determine the dissociation constant for NADPH in the binary and ternary complexes, and the stoichiometry of the complexes, from the results of fluorescence titrations. A new method of analysis of fluorescence titration data is described. The results show that each subunit of the dimeric enzyme binds NADPH independently and with the same affinity. The dissociation constant for the enzyme-coenzyme complex, in phosphate buffer, pH 7.0, is 5.7 μm; the dissociation constant for NADPH in the ternary complex with 6-phosphogluconate is 7.0 μm.  相似文献   

12.
13.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The rotenone sensitivity of bovine heart NADH: coenzyme Q oxidoreductase (Complex I) depends significantly on coenzyme Q1 concentration. The rotenone-insensitive Complex I reaction in Q1 concentration range above 300 M indicates an ordered sequential mechanism with Q1 and reduced Q1 (Q1H2) as the initial substrate to bind to the enzyme and the last product to be released from the enzyme product complex, respectively. This is the case in the rotenone-sensitive reaction although both K m and V max values of the rotenone-insensitive reaction for Q1 are significantly higher than those of the rotenone-sensitive reaction (Nakashima et al., 2002, J. Bioenerg. Biomemb. 34, 11–19). This rigorous control mechanism between the nucleotide and ubiquinone binding sites strongly suggests that the rotenone-insensitive reaction is also physiologically relevant.  相似文献   

15.
We have immunolocalized phenol sulfotransferase (PST)G, an isoform of PST in sustentacular cells which reside in the dorso-medial portion of the nasal cavity of the mouse. The same topographical pattern of gene expression has been reported for some olfactory neuron-specific genes. When several established (phenol-containing) odorants were used as substrates, mouse nasal tissue cytosol showed a significant level of PST activity, as does mouse liver cytosol. This study is the first to demonstrate that gene expression in the olfactory sustentacular cells is also organized zonally, and indicates the involvement of sulfo-conjugation in olfactory perireceptor processes, such as odorant clearance and xenobiotic detoxification.  相似文献   

16.
Phenol sulfotransferase was localized as a soluble enzyme in platelets from human blood. The enzyme was found to esterify a variety of endogenous phenolic biogenic amines including tyramine, dopamine, norepinephrine and 5-hydroxytryptamine as well as phenol. Of the substrates tested dopamine was found to be most rapidly conjugated when present at a concentration of 30 μM while tyramine was found to be the best substrate at a concentration of 100 μM. The Km value for tyramine was 59 μM and tyramine concentrations of 400 μM or greater resulted in apparent substrate inhibition. The possible clinical implications of of these findings are discussed.  相似文献   

17.
18.
19.
P J Day  W V Shaw  M R Gibbs  A G Leslie 《Biochemistry》1992,31(17):4198-4205
The possible involvement of arginyl and lysyl side chains of chloramphenicol acetyltransferase (CAT) in binding coenzyme A (CoA) was studied by means of chemical modification, site-directed mutagenesis, variation in ionic strength, use of competitive inhibitors or substrate analogues, and X-ray crystallography. Unlike a number of enzymes, including citrate synthase, CAT does not employ specific ion pairs with the phosphoanionic centers of CoA to bind the acetyl donor, and arginyl residues play no role in recognition of the coenzyme. Although phenylglyoxal inactivates CAT reversibly, it does so by the formation of an unstable adduct with a thiol group, that of Cys-31 in the chloramphenicol binding site. The inhibitory effect of increasing ionic strength on kcat/Km(acetyl-CoA) can be explained by long-range electrostatic interactions between CoA and the epsilon-amino groups of Lys-54 and Lys-177, both of which are solvent-accessible. The epsilon-amino group of Lys-54 contributes 1.3 kcal.mol-1 to the binding of acetyl-CoA via interactions with both the 3'- and 5'-phosphoanions of CoA. Lys-177 contributes only 0.4 kcal.mol-1 to the productive binding of acetyl-CoA, mediated by long-range (approximately 14 A) interactions with the 5'-alpha- and -beta-phosphoanions of CoA. The combined energetic contribution of Lys-54 and Lys-177 to acetyl-CoA binding (1.7 kcal.mol-1) is less than that previously demonstrated (2.4 kcal.mol-1) for a simple hydrophobic interaction between Tyr-178 and the adenine ring of CoA (Day & Shaw, 1992).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The enzyme, D-erythrodihydroneopterin triphosphate synthetase from rat brain was observed to have a significantly lower specific activity than that from liver due to their degree of dephosphorylation during preparation. The brain enzyme could be phosphorylated in vitro in presence of [32P]-ATP and protein kinase, resulting in an increased specific activity. Isolation of brain enzyme in presence of 0.8 M NaF allowed recovery of the enzyme phosphorylated at residue 67 (serine) as determined by a new assay for phosphate. This enzyme is present in synaptosomes and its state of phosphorylation may regulate the rate at which dihydrobiopterin, the precursor of the hydroxylase cofactor (tetrahydrobiopterin, BH4), is synthesized by synaptosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号