首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. UMEMOTO, Y. NAITO, M. LI, I. SUZUKI AND I. NAMIKAWA. 1996. Agar diffusion analysis demonstrated that rat cystatin S, a cysteine proteinase inhibitor, inhibited the growth of all tested strains of a human oral, Gram-negative anaerobic periodontopathogen Porphyromonas gingivalis. Its specific inhibitory activity against this tissue-invasive bacterium but not against other tested oral bacterial species emphasized the importance of specific cysteine proteinases for growth of P. gingivalis.  相似文献   

2.
Porphyromonas gingivalis, an important periodontal disease pathogen, forms black-pigmented colonies on blood agar. Pigmentation is believed to result from accumulation of iron protoporphyrin IX (FePPIX) derived from erythrocytic hemoglobin. The Lys-X (Lys-gingipain) and Arg-X (Arg-gingipain) cysteine proteases of P. gingivalis bind and degrade erythrocytes. We have observed that mutations abolishing activity of the Lys-X-specific cysteine protease, Kgp, resulted in loss of black pigmentation of P. gingivalis W83. Because the hemagglutinating and hemolytic potentials of mutant strains were reduced but not eliminated, we hypothesized that this protease played a role in acquisition of FePPIX from hemoglobin. In contrast to Arg-gingipain, Lys-gingipain was not inhibited by hemin, suggesting that this protease played a role near the cell surface where high concentrations of hemin confer the black pigmentation. Human hemoglobin contains 11 Lys residues in the alpha chain and 10 Lys residues in the beta chain. In contrast, there are only three Arg residues in each of the alpha and beta chains. These observations are consistent with human hemoglobin being a preferred substrate for Lys-gingipain but not Arg-gingipain. The ability of the Lys-gingipain to cleave human hemoglobin at Lys residues was confirmed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of hemoglobin fragments resulting from digestion with the purified protease. We were able to detect several of the predicted hemoglobin fragments rendered by digestion with purified Lys-gingipain. Thus, we postulate that the Lys-gingipain of P. gingivalis is a hemoglobinase which plays a role in heme and iron uptake by effecting the accumulation of FePPIX on the bacterial cell surface.  相似文献   

3.
Porphyromonas gingivalis produces arginine-specific cysteine proteinase (Arg-gingipain, RGP) and lysine-specific cysteine proteinase (Lys-gingipain, KGP) in the extracellular and cell-associated forms. Two separate genes (rgpA and rgpB) and a single gene (kgp) have been found to encode RGP and KGP, respectively. We constructed rgpA rgpB kgp triple mutants by homologous recombination with cloned rgp and kgp DNA interrupted by drug resistance gene markers. The triple mutants showed no RGP or KGP activity in either cell extracts or culture supernatants. The culture supernatants of the triple mutants grown in a rich medium had no proteolytic activity toward bovine serum albumin or gelatin derived from human type I collagen. Moreover, the mutants did not grow in a defined medium containing bovine serum albumin as the sole carbon/energy source. These results indicate that the proteolytic activity of P. gingivalis toward bovine serum albumin and gelatin derived from human type I collagen appears to be attributable to RGP and KGP. The hemagglutinin gene hagA of P. gingivalis possesses the adhesin domain regions responsible for hemagglutination and hemoglobin binding that are also located in the C-terminal regions of rgpA and kgp. A rgpA kgp hagA triple mutant constructed in this study exhibited no hemagglutination using sheep erythrocytes or hemoglobin binding activity, as determined by a solid-phase binding assay with horseradish peroxidase-conjugated human hemoglobin, indicating that the adhesin domains seem to be particularly important for P. gingivalis cells to agglutinate erythrocytes and bind hemoglobin, leading to heme acquisition.  相似文献   

4.
Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the beta-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a usable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant.  相似文献   

5.
Porphyromonas gingivalis (Bacteroides gingivalis) requires iron in the form of hemin for growth and virulence in vitro, but the contributions of the porphyrin ring structure, porphyrin-associated iron, host hemin-sequestering molecules, and host iron-withholding proteins to its survival are unknown. Therefore, the effects of various porphyrins, host iron transport proteins, and inorganic iron sources on the growth of P. gingivalis W50 were examined to delineate the various types of iron molecules used for cellular metabolism. Cell envelope-associated hemin and iron stores contributed to the growth of P. gingivalis in hemin-free culture, and depletion of these endogenous reserves required eight serial transfers into hemin-free medium for total suppression of growth. Comparable growth of P. gingivalis was observed with 7.7 microM equivalents of hemin as hemoglobin (HGB), methemoglobin, myoglobin, hemin-saturated serum albumin, lactoperoxidase, cytochrome c, and catalase. Unrestricted growth was recorded in the presence of haptoglobin-HGB and hemopexin-hemin complexes, indicating that these host defense proteins do not sequester HGB and hemin from P. gingivalis. The iron chelator 2,2'-bipyridyl functionally chelated hemin-associated iron, resulting in dose-dependent inhibition of growth in hemin-restricted cultures at 1 to 25 microM 2,2'-bipyridyl concentrations. In the absence of an exogenous iron source, protoporphyrin IX did not support P. gingivalis growth. These findings suggest that the iron atom in the hemin molecule is the critical constituent for growth and that the tetrapyrrole porphyrin ring structure may represent an important vehicle for delivery of iron into the P. gingivalis cell. P. gingivalis does not have a strict requirement for porphyrins, since growth occurred with nonhemin iron sources, including high concentrations (200 muM) of ferric, ferrous, and nitrogenous inorganic iron, and P. gingivalis exhibited unrestricted growth in the presence of host transferrin, lactoferrin, and serum albumin. The diversity of iron substrates utilized by P. gingivalis and the observation that growth was not affected by the bacteriostatic effects of host iron-withholding proteins, which it may encounter in the periodontal pocket, may explain why P. gingivalis is such a formidable pathogen in the periodontal disease process.  相似文献   

6.
Arg-gingipain (Rgp) is a major cysteine proteinase produced by the oral bacterium Porphyromonas gingivalis, which is a major pathogen of advanced periodontal diseases. This enzyme is important for the bacterium both to exhibit its virulence and to survive in periodontal pockets. The development of Rgp inhibitors thus provides new therapeutic approaches to periodontal diseases. In this study, we first isolated and purified a novel and potent inhibitor of Rgp from the culture supernatant of Streptomyces species strain FA-70, now designated as FA-70C1. This compound was found to be an antipain analog composed of phenylalanyl-ureido-citrullinyl-valinyl-cycloarginal (C27H43N9O7). The Ki value was calculated to be 4.5x10(-9) M when benzyloxycarbonyl-phenylalanyl-arginine-4-methly-coumaryl-7-amide was used as a substrate. This compound also inhibited cathepsins B, L, and H, though their Ki values were much higher than that of Rgp. FA-70C1 had little or no inhibitory activity on Lys-gingipain, another cysteine proteinase of P. gingivalis. The Rgp-induced degradation of various human proteins was completely blocked by this inhibitor. Disruption of both the bactericidal activity of polymorphonuclear leukocytes and the viability of human fibroblasts and umbilical vein endothelial cells induced by the culture supernatant of P. gingivalis was suppressed by the inhibitor in a dose-dependent manner. The enhancement of vascular permeability induced by in vivo administration of the culture supernatant of P. gingivalis was strongly inhibited by the inhibitor. Furthermore, the growth of P. gingivalis was suppressed by FA-70C1 in a dose-dependent manner. These results strongly suggest that FA-70C1 is a useful tool to prevent the virulence of P. gingivalis.  相似文献   

7.
Abstract We examined the effect of the concentration of various types of iron molecules on the regulation of growth of Porphyromonas gingivalis . Bacterial growth was monitored spectrophotometrically. The hemin-depleted cells of P. gingivalis 381 were incubated in the basal medium plus test substrates such as hemoglobin, hemin, transferrin and various inorganic iron compounds. The relationship between the specific growth rate of organisms and the concentration of iron-containing compounds was determined. The value of K s, a parameter analogous to the Michaelis-Menten constant, was estimated. P . gingivalis 381 showed a K ss value of 3.85, 4.91 and 0.0017 μM for hemin, transferrin and hemoglobin, respectively. However, the inorganic iron compounds tested did not support growth of P. gingivalis . These findings suggest that P. gingivalis utilizes hemoglobin as an iron source much more effectively than other iron-containing compounds under an iron-limited environment.  相似文献   

8.
Deferoxamine (DFO), an FDA-approved iron chelator used for treatment of iron poisoning, affects bacteria as iron availability is intimately connected with growth and several virulence determinants. However, little is known about the effect on oral pathogens. In this study, the effect of DFO on Porphyromonas gingivalis, a major periodontopathogen which has an essential growth requirement for hemin (Fe(3+)-protoporphyrin IX), was evaluated. The viability of P. gingivalis W83 was not affected by 0.06-0.24 mM DFO, whereas the doubling time of the bacterium was considerably prolonged by DFO. The inhibitory effect was evident at earlier stages of growth and reduced by supplemental iron. UV-visible spectra using the pigments from P. gingivalis cells grown on blood agar showed that DFO inhibited μ-oxo bisheme formation by the bacterium. DFO decreased accumulation and energy-driven uptake of hemin by P. gingivalis. Antibacterial effect of H(2)O(2) and metronidazole against P. gingivalis increased in the presence of DFO. Collectively, DFO is effective for hemin deprivation in P. gingivalis suppressing the growth and increasing the susceptibility of the bacterium to other antimicrobial agents such as H(2)O(2) and metronidazole. Further experiments are necessary to show that DFO may be used as a therapeutic agent for periodontal disease.  相似文献   

9.
10.
Arginine-specific cysteine proteinase (Arg-gingipain [RGP], a major proteinase secreted from the oral anaerobic bacterium Porphyromonas gingivalis, is encoded by two separate genes (rgpA and rgpB) on the P. gingivalis chromosome and widely implicated as an important virulence factor in the pathogenesis of periodontal disease (K. Nakayama, T. Kadowaki, K. Okamoto, and K. Yamamoto, J. Biol. Chem. 270:23619-23626, 1995). In this study, we investigated the role of RGP in the formation of P. gingivalis fimbriae which are thought to mediate adhesion of the organism to the oral surface by use of the rgp mutants. Electron microscopic observation revealed that the rgpA rgpB double (RGP-null) mutant possessed very few fimbriae on the cell surface, whereas the number of fimbriae of the rgpA or rgpB mutant was similar to that of the wild-type parent strain. The rgpB+ revertants that were isolated from the double mutant and recovered 20 to 40% of RGP activity of the wild-type parent possessed as many fimbriae as the wild-type parent, indicating that RGP significantly contributes to the fimbriation of P. gingivalis as well as to the degradation of various host proteins, disturbance of host defense mechanisms, and hemagglutination. Immunoblot analysis of cell extracts of these mutants with antifimbrilin antiserum revealed that the rgpA rgpB double mutant produced small amounts of two immunoreactive proteins with molecular masses of 45 and 43 kDa, corresponding to those of the precursor and mature forms of fimbrilin, respectively. The result suggests that RGP may function as a processing proteinase for fimbrilin maturation. In addition, a precursor form of the 75-kDa protein, one of the major outer membrane proteins of P. gingivalis, was accumulated in the rgpA rgpB double mutant but not in the single mutants and the revertants, suggesting an extensive role for RGP in the maturation of some of the cell surface proteins.  相似文献   

11.
Complement components C3 and C5 are susceptible to limited proteolysis by an arginine-specific cysteine proteinase isolated from Porphyromonas gingivalis. This bacterium is an anaerobe commonly associated with severe periodontal disease. Infection by P. gingivalis is accompanied by an acute inflammatory response, complete with extensive neutrophil involvement. This prompted us to investigate a possible direct role for complement in periodontitis evoked by P. gingivalis. Exposure of C3 and C5 to the cysteine proteinase at molar ratios between 1:25 and 1:100 (enzyme to substrate ratios) resulted in a time-dependent, limited degradation of each component. C3 was converted in a stepwise manner to C3a-like and C3b-like fragments with evidence of extensive further degradation of the C3a-like portion of the molecule. We were unable to demonstrate C3a activity in the C3 digestion mixtures. C3 degradation appears to involve primarily the alpha-chain. Proteolysis of C5 also progresses in a stepwise manner producing an initial internal cleavage of the alpha-chain to generate 30- and 86-kDa fragments. Further digestion of the 86-kDa amino-terminal fragment of the alpha-chain leads to the release of C5a or a C5a-like fragment that is biologically active for neutrophil activation. The fact that a potent chemotactic factor, i.e. C5a, can be generated from C5 by a proteinase derived from P. gingivalis suggests a recruiting mechanism for attracting neutrophils to the gingival lesion site in periodontal disease.  相似文献   

12.
Heme binding and uptake are considered fundamental to the growth and virulence of the gram-negative periodontal pathogen Porphyromonas gingivalis. We therefore examined the potential role of the dominant P. gingivalis cysteine proteinases (gingipains) in the acquisition of heme from the environment. A recombinant hemoglobin-binding domain that is conserved between two predominant gingipains (domain HA2) demonstrated tight binding to hemin (Kd = 16 nM), and binding was inhibited by iron-free protoporphyrin IX (Ki = 2.5 microM). Hemoglobin binding to the gingipains and the recombinant HA2 (rHA2) domain (Kd = 2.1 nM) was also inhibited by protoporphyrin IX (Ki = 10 microM), demonstrating an essential interaction between the HA2 domain and the heme moiety in hemoglobin binding. Binding of rHA2 with either hemin, protoporphyrin IX, or hematoporphyrin was abolished by establishing covalent linkage of the protoporphyrin propionic acid side chains to fixed amines, demonstrating specific and directed binding of rHA2 to these protoporphyrins. A monoclonal antibody which recognizes a peptide epitope within the HA2 domain was employed to demonstrate that HA2-associated hemoglobin-binding activity was expressed and released by P. gingivalis cells in a batch culture, in parallel with proteinase activity. Cysteine proteinases from P. gingivalis appear to be multidomain proteins with functions for hemagglutination, erythrocyte lysis, proteolysis, and heme binding, as demonstrated here. Detailed understanding of the biochemical pathways for heme acquisition in P. gingivalis may allow precise targeting of this critical metabolic aspect for periodontal disease prevention.  相似文献   

13.
The porphyrin requirements for growth recovery of Porphyromonas gingivalis in heme-depleted cultures are investigated. In addition to physiologically relevant sources of heme, growth recovery is stimulated by a number of noniron porphyrins. These data demonstrate that, as for Haemophilus influenzae, reliance on captured iron and on exogenous porphyrin is manifest as an absolute growth requirement for heme. A number of outer membrane proteins including some gingipains contain the hemoglobin receptor (HA2) domain. In cell surface extracts, polypeptides derived from HA2-containing proteins predominated in hemoglobin binding. The in vitro porphyrin-binding properties of a recombinant HA2 domain were investigated and found to be iron independent. Porphyrins that differ from protoporphyrin IX in only the vinyl aspect of the tetrapyrrole ring show comparable effects in competing with hemoglobin for HA2 and facilitate growth recovery. For some porphyrins which differ from protoporphyrin IX at both propionic acid side chains, the modification is detrimental in both these assays. Correlations of porphyrin competition and growth recovery imply that the HA2 domain acts as a high-affinity hemophore at the cell surface to capture porphyrin from hemoglobin. While some proteins involved with heme capture bind directly to the iron center, the HA2 domain of P. gingivalis recognizes heme by a mechanism that is solely porphyrin mediated.  相似文献   

14.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

15.
Abstract Several clinical isolates of Vibrio parahaemolyticus were examined for their ability to utilize either hemin or hemoglobin as a sole source of iron. Both compounds appeared to be equally good iron sources. Maximum growth was obtained at 5 μM hemin or 1.25 μM hemoglobin under the conditions tested. Using a hemin-agarose batch affinity method, the hemin-binding protein was isolated from crude total membranes of a hemin-utilizing strain, WP1, grown under iron-deficient but not under iron-sufficient conditions. This protein was identical to the 83 kDa outer membrane protein which was expressed in response to iron limitation. The protein was susceptible to proteinase K cleavage in whole cells, indicating its exposure at the cell surface. Hemin and hemoglobin, but not protoporphyrin IX, inhibited binding of the protein to hemin-agarose.  相似文献   

16.
We have previously reported on the identification and characterization of the Porphyromonas gingivalis A7436 strain outer membrane receptor HmuR, which is involved in the acquisition of hemin and hemoglobin. We demonstrated that HmuR interacts with the lysine- (Kgp) and arginine- (HRgpA) specific proteases (gingipains) and that Kgp and HRgpA can bind and degrade hemoglobin. Here, we report on the physiological significance of the HmuR-Kgp complex in heme utilization in P. gingivalis through the construction and characterization of a defined kgp mutant and a hmuR kgp double mutant in P. gingivalis A7436. The P. gingivalis kgp mutant exhibited a decreased ability to bind both hemin and hemoglobin. Growth of this strain with hemoglobin was delayed and its ability to utilize hemin as a sole iron source was diminished as compared to the wild type strain. Inactivation of both the hmuR and kgp genes resulted in further decreased ability of P. gingivalis to bind hemoglobin and hemin, as well as diminished ability to utilize either hemin or hemoglobin as a sole iron source. Collectively, these in vivo results further confirmed that both HmuR and Kgp are involved in the utilization of hemin and hemoglobin in P. gingivalis A7436.  相似文献   

17.
Arg-gingipain (Rgp) and Lys-gingipain (Kgp) are two major cysteine proteinases produced by the oral anaerobic bacterium Porphyromonas gingivalis, which has been shown to act as major pathogen in the development and progression of periodontal diseases. These enzymes are also important for this organism to proliferate and survive in periodontal pockets. Here we show that Rgp is responsible for the disruption of fibronectin-integrin interactions in human gingival fibroblasts by P. gingivalis. Fibroblasts incubated with the culture supernatant of P. gingivalis showed a time-dependent loss of the adhesion activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting revealed that fibronectin and integrin subunits alpha2, beta1 and beta3 in the fibroblast culture largely disappeared with the treatment. The detached cells became committed to death by disruption of contacts between adhesion molecules. In contrast, the culture supernatants from the Rgp-deficient mutants produced no significant changes in either cell adhesion or viability. Prior treatment of the culture supernatant of P. gingivalis with an Rgp inhibitor, but not a Kgp inhibitor, strongly inhibited the detachment of fibroblasts followed by cell death. These results suggest that Rgp disrupts the integrin-fibronectin interactions in fibroblasts, thereby contributing to the damage of periodontal tissues in periodontal diseases caused by P. gingivalis.  相似文献   

18.
19.
The obligately anaerobic bacterium Porphyromonas gingivalis produces characteristic black-pigmented colonies on blood agar. It is thought that the black pigmentation is caused by haem accumulation and is related to virulence of the microorganism. P. gingivalis cells expressed a prominent 19 kDa protein when grown on blood agar plates. Analysis of its N-terminal amino acid sequence indicated that the 19 kDa protein was encoded by an internal region (HGP15 domain) of an arginine-specific cysteine proteinase (Arg-gingipain, RGP)-encoding gene ( rgp1 ) and was also present in genes for lysine-specific cysteine proteinases ( prtP and kgp ) and a haemagglutinin ( hagA ) of P. gingivalis . The HGP15 domain protein was purified from an HGP15-overproducing Escherichia coli and was found to have the ability to bind to haemoglobin in a pH-dependent manner. The anti-HGP15 antiserum reacted with the 19 kDa haemoglobin-binding protein in the envelope of P. gingivalis. P. gingivalis wild-type strain showed pH-dependent haemoglobin adsorption, whereas its non-pigmented mutants that produced no HGP15-related proteins showed deficiency in haemoglobin adsorption. These results strongly indicate a close relationship among HGP15 production, haemoglobin adsorption and haem accumulation of P. gingivalis .  相似文献   

20.
Bacteria that inhabit the respiratory and genitourinary tracts of mammals encounter an iron-deficient environment on the mucosal surface where iron is complexed by the host iron-binding proteins transferrin and lactoferrin. Lactoferrin is also present in high concentrations at sites of inflammation where the cationic anti-microbial peptide lactoferricin is produced by proteolysis of lactoferrin. Several members of the Neisseriaceae and Moraxellaceae families express surface receptors, capable of specifically binding host lactoferrin and extracting the iron from lactoferrin as a source of iron for growth. The receptor is comprised of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a largely exposed surface lipoprotein, lactoferrin binding protein B (LbpB). LbpA is essential for mediating growth using lactoferrin as a sole iron source whereas LbpB only plays a facilitating role. LbpB, with the presence of a large tract of negatively charged residues, appears to protect the bacterial cell from the bactericidal effects of the lactoferricin. The lactoferrin receptors in these species appear to be essential for survival and thus may serve as potential vaccine targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号