首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Involvement of T-type voltage dependent Ca2+ channels (VDCCs) on morphine antinociception, in the development of tolerance and dependence to morphine, and naloxone-precipitated abstinence syndrome in morphine dependent mice was examined by using mibefradil, a T-type VDCCs blocker. Mice were rendered tolerant and dependent on morphine by subcutaneous (s.c.) implantation of a morphine pellet containing 75 mg of morphine base for 72 hr. The tail-flick test was used to assess the nociceptive threshold. Coadministration of acute mibefradil (10 mg/kg, i.p.) with morphine enhanced the antinociceptive effects of acute morphine. Repeated mibefradil administration (10 mg/kg, i.p., just before, 24 and 48 hr after morphine pellet implantation) completely blocked the development of tolerance to the antinociceptive effect of morphine and even by this effect reached supersensitivity to morphine. However, repeated mibefradil treatment did not alter the development of dependence to morphine assessed by the A(50) values of naloxone (s.c.) required to precipitate withdrawal jumping 72 hr after morphine pellet. But, acute mibefradil (10, 30, and 50 mg/kg, i.p.) dose dependently decreased the expression of morphine abstinence syndrome when given directly 30 min prior to naloxone (0,05 mg/kg, s.c.) 72 hr after morphine pellet. These results indicate a critical role of T-type VDCCs in morphine antinociception, the development of tolerance to the antinociceptive effects of morphine and in morphine abstinence syndrome.  相似文献   

2.
The study has evaluated the effect of diabetes associated hyperglycaemia on nociception and antinociception induced by morphine, buprenorphine and pentazocine in female albino rats. Rats were allocated into 3 groups of 20 each--group I consisted of control having normal blood glucose levels (BGLs), group II consisted of streptozotocin-induced diabetics (STZ-D) having hyperglycaemia and group III consisted of diabetic rats controlled with insulin treatment. Immediately before and 15, 30 min, 1, 2 and 3 hr after injection with test drugs, rats were subjected to a thermal noxious stimulus using tail withdrawal from hot water and tail-flick latencies (TFL) so generated were recorded. Similarly, before and 30, 45 min and 1 hr after injection with drugs rats were subjected to abdominal writhing with hypertonic saline and number of writhes were counted per 90 sec. In STZ-D animals (BGLs 317.95 +/- 3.8 mg/dl) a decreased TFL with an increase in the number of writhes compared to control and diabetes controlled with insulin treatment was observed. Percent maximum possible effect of morphine (5 mg/kg, s.c.) and buprenorphine (2 mg/kg, s.c.) was significantly lower when compared to control as well as STZ-D controlled with insulin treatment groups. Similarly percent protection from writhing of morphine (0.05 mg/kg, s.c.) and buprenorphine (0.01 mg/kg, s.c.) was significantly less in comparison to control and STZ-D controlled with insulin treatment group. However, percent maximum possible effect of pentazocine (20 mg/kg, s.c.) and percent protection from writhing of pentazocine (1 mg/kg, s.c.) was significantly high in STZ-D rats when compared to control and STZ-D rats controlled with insulin treatment groups. The results suggest that both mu and kappa--opioid receptors may be modulated by blood glucose levels possibly involving cellular energetics mediated change in potassium (KATP) channels in females rats, albeit differentially.  相似文献   

3.
Experimental diabetes induced by streptozotocin (200 mg/kg, ip) markedly decreased the antinociceptive effect of morphine and significantly increased the urinary nitrite concentration. Administration of FR-167653 (a selective p38MAPKinase inhibitor) in a dose of 4 mg/kg improved the antinociceptive effect of morphine and attenuated the increase in urinary nitrite concentration in diabetic mice. It may be concluded that diabetes-induced decrease in antinociceptive effect of morphine may be due to induction of p38 MAPKinase activity.  相似文献   

4.
We have previously reported that serotonin concentration was reduced in the brain of mice with neuropathic pain and that it may be related to reduction of morphine analgesic effects. To further prove this pharmacological action, we applied fluoxetine, a selective serotonin reuptake inhibitor, to determine whether it suppressed neuropathic pain and examined how its different administration routes would affect antinociceptive and antiallodynic effects of morphine in diabetic (DM) and sciatic nerve ligation (SL) mice, as models of neuropathic pain. Antiallodynia and antinociceptive effect of drugs were measured by using von Frey filament and tail pinch tests, respectively. Fluoxetine given alone, intracerebroventicularly (i.c.v., 15 microg/mouse) or intraperitoneally (i.p., 5 and 10 mg/kg) did not produce any effect in either model. However, fluoxetine given i.p. enhanced both antiallodynic and antinociceptive effects of morphine. Administration of fluoxetine i.c.v., slightly enhanced only the antiallodynic effect of morphine in SL mice. Ketanserine, a serotonin 2A receptor antagonist (i.p., 1 mg/kg) and naloxone, an opioid receptor antagonist (i.p., 3 mg/kg), blocked the combined antinociceptive effect of fluoxetine and morphine. Our data show that fluoxetine itself lacks antinociceptive properties in the two neuropathy models, but it enhances the analgesic effect of morphine in the periphery and suggests that co-administration of morphine with fluoxetine may have therapeutic potential in treatment of neuropathic pain.  相似文献   

5.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

6.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   

7.
The effects of the benzodiazepine receptor antagonist, Ro 15-1788, were examined on analgesia induced by morphine after central (intracerebroventricular, i.c.v., or intrathecal, i.t.) and systemic administration. Analgesia was assessed in squirrel monkeys trained to respond under an electric shock tiltration procedure and in mice using the radiant heat tail-flick test. Central and systemic administration of morphine produced antinociceptive effects that were antagonized by 0.1 mg/kg of naloxone in both species. Ro 15-1788 antagonized the effects of morphine after central (i.c.v. or i.t.) administration but did not alter the effects of morphine given by the systemic route. This novel interaction suggests that Ro 15-1788 may be useful in pharmacologically separating neural substrates subserving opiate analgesia.  相似文献   

8.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

9.
ABSTRACT: BACKGROUND: The mechanisms of the antinociceptive activity of () epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher. METHODS: were assessed in the model of chemical nociception induced by glutamate (20 mumol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT2A), yoimbine (0.15 mg/kg s.c. alpha2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1a/1b receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT3 receptor) and L-arginine (600 mg/kg i.p.). RESULTS: The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT1A and 5HT2A), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT3 receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results. CONCLUSIONS: This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic.  相似文献   

10.
《Life sciences》1996,59(11):PL133-PL139
The antinociceptive effect of racemic tetrahydropapaveroline (THP), of its two R(+)- and S(−) enantiomers, of 1-2-dehydro-THP and of 1-carboxy-THP was assessed using different pain tests in mice. None of these drugs possessed a significant activity in the hot-plate and tail-flick tests. However, after i.p. injection, they reduced the number of abdominal writhes induced by phenylbenzoquinone, with ED50 values of 51 ± 7, 73 ± 9 and 79 ± 7 mg/kg for the most potent compounds: 1,2-dehydro-THP, ±THP and -THP, respectively. This activity was not antagonized by naloxone (1 mg/Kg, S.c.). However combination of inactive doses of these three compounds (32 mg/Kg, I.p.) and of morphine (0.5 mg/Kg, S.c.) led to a significant antinociceptive effect (83 to 85 % of reduction of the number of writhes). This synergistic potentiation confirmed with the combination of ±THP (16 mg/Kg, I.p.) and morphine (0.5 mg/Kg, S.c.) was totally inhibited by naloxone (1 mg/Kg, S.c.). These results, although excluding a direct agonistic effect of THP derivatives on opiate receptors, suggest an indirect interaction of these drugs with the endogenous opioid system.  相似文献   

11.
Previous studies indicate that an increased release of cholecystokinin (CCK) in response to morphine administration may counteract opioid-induced analgesia at the spinal level. In the present study we used in vivo microdialysis to demonstrate that systemic administration of antinociceptive doses of morphine (1-5 mg/kg, s.c.) induces a dose-dependent and naloxone-reversible release of CCK-like immunoreactivity (CCK-LI) in the dorsal horn of the spinal cord. A similar response could also be observed following perfusion of the dialysis probe for 60 min with 100 microM but not with 1 microM morphine. The CCK-LI release induced by morphine (5 mg/kg, s.c.) was found to be calcium-dependent and tetrodotoxin-sensitive (1 microM in the perfusion medium). Topical application of either the L-type calcium channel blocker verapamil (50 microg) or the N-type calcium channel blocker omega-conotoxin GVIA (0.4 microg) onto the dorsal spinal cord completely prevented the CCK-LI release induced by morphine (5 mg/kg, s.c.). Our data indicate that activation of L- and N-type calcium channels is of importance for morphine-induced CCK release, even though the precise site of action of morphine in the dorsal horn remains unclear. The present findings also suggest a mechanism for the potentiation of opioid analgesia by L- and N-type calcium channel blocking agents.  相似文献   

12.
Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy.  相似文献   

13.
The antinociceptive effect of the methanolic extract (ME) and two triterpenes isolated from E. mosenii (Orchidaceae) has been investigated in chemical and thermal models of nociception in mice. The ME of E. mosenii (0.3-30 mg kg(-1), i.p. or 50-400 mg kg(-1), p.o.) produced dose-related, significant and long-lasting (4 to 6 h) inhibition of acetic acid-induced abdominal constriction, with ID50 values of 3.9 and 137.0 mg kg(-1), respectively. Pholidotin and 24-methylenecycloartenol isolated from E. mosenii (0.1-3.0 mg kg(-1), i.p.) also produced marked and dose-related inhibition of acetic acid-induced pain, with ID50 values of 0.9 and 1.1 mg kg(-1). However, these compounds and the ME were about 3- to 13-fold more potent at the level of ID50 than diclofenac when assessed in acetic acid-induced abdominal constriction. The ME of E. mosenii in the same range of doses produced dose-related inhibition of both phases of formalin-induced licking, with mean ID50 values for the first and the second phases of 0.9, 122.0 mg kg(-1) and 0.7, 258.0 mg kg(-1), respectively by i.p. or p.o. routes. In addition, the ME (0.3-30 mg kg(-1), i.p., or 50-400 mg kg(-1), p.o.) also caused dose-related inhibition of capsaicin-induced neurogenic pain with mean ID50 values of 5.2 and 130.0 mg kg(-1), respectively. Treatment of animals with naloxone (5 mg kg(-1), i.p.) completely reversed the antinociceptive effect caused by morphine (5 mg kg(-1), s.c.) and that caused by ME of E. mosenii (1 mg kg(-1), i.p.) when assessed against either phase of the formalin-induced pain. Furthermore, when assessed in the hot-plate test, ME (100 mg kg(-1), i.p.) and morphine (10 mg kg(-1), s.c.) caused significant increase in response latency. However, ME given daily for to 7 consecutive days did not develop tolerance to itself nor did it induce cross-tolerance to morphine. Taken together these data demonstrate that the ME of E. mosenii elicited pronounced antinociception, when assessed by i.p. or p.o. routes, against several models of pain. Its actions involve, at least in part, an interaction with opioid system, seeming no to be related with a non-specific peripheral or central depressant actions. Finally, the active principle(s) responsible for the antinociceptive action of E. mosenii is likely related to the presence of the triterpenes.  相似文献   

14.
The present study investigates the effects of a neurosteroid tetrahydrodeoxycorticosterone (5alpha-pregnan-3alpha-21-diol-20-one) in two experimental models of pain sensitivity in mice. Tetrahydrodeoxycorticosterone (2.5, 5 mg/kg, i.p.) dose dependently decreased the licking response in formalin test and increased the tail flick latency (TFL) in tail flick test. Bicuculline (2 mg/kg, i.p.), a GABA(A) receptor antagonist blocked the antinociceptive effect of tetrahydrodeoxycorticosterone in TFL test but failed to modulate licking response in formalin test. Naloxone (1 mg/kg, i.p.), an opioid antagonist effectively attenuated the analgesic effect of tetrahydrodeoxycorticosterone in both the models. Tetrahydrodeoxycorticosterone pretreatment potentiated the antinociceptive response of morphine, an opioid compound and nimodipine, a calcium channel blocker in formalin as well as TFL test. Thus, tetrahydrodeoxycorticosterone exerts an analgesic effect, which may be mediated by modulating GABA-ergic and/or opioid-ergic mechanisms and voltage-gated calcium channels.  相似文献   

15.
Inosine is the first metabolite of adenosine. It exerts an antinociceptive effect by activating the adenosine A1 and A2A receptors. We have previously demonstrated that inosine exhibits antinociceptive properties in acute and chronic mice models of nociception. The aim of this study was to investigate the involvement of pertussis toxin-sensitive G-protein-coupled receptors, as well as K+ and Ca2+ channels, in the antinociception promoted by inosine in the formalin test. Mice were pretreated with pertussis toxin (2.5 μg/site, i.t., an inactivator of Gi/0 protein); after 7 days, they received inosine (10 mg/kg, i.p.) or morphine (2.5 mg/kg, s.c., used as positive control) immediately before the formalin test. Another group of animals received tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (1 μg/site, i.t., a non-specific voltage-gated K+ channel blockers), apamin (50 ng/site, i.t., a small conductance Ca2+-activated K+ channel blocker), charybdotoxin (250 pg/site, i.t., a large-conductance Ca2+-activated K+ channel blocker), glibenclamide (100 μg/site, i.t., an ATP-sensitive K+ channel blocker) or CaCl2 (200 nmol/site, i.t.). Afterwards, the mice received inosine (10 mg/kg, i.p.), diclofenac (10 mg/kg, i.p., a positive control), or morphine (2.5 mg/kg, s.c., a positive control) immediately before the formalin test. The antinociceptive effect of inosine was reversed by the pre-administration of pertussis toxin (2.5 μg/site, i.t.), TEA, 4-aminopyridine, charybdotoxin, glibenclamide, and CaCl2, but not apamin. Further, all K+ channel blockers and CaCl2 reversed the antinociception induced by diclofenac and morphine, respectively. Taken together, these data suggest that the antinociceptive effect of inosine is mediated, in part, by pertussis toxin-sensitive G-protein coupled receptors and the subsequent activation of voltage gated K+ channel, large conductance Ca2+-activated and ATP-sensitive K+ channels or inactivation of voltage-gated Ca2+ channels. Finally, small conductance Ca2+-activated K+ channels are not involved in the antinociceptive effect of inosine.  相似文献   

16.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

17.
The measurement of step-down latency in passive avoidance has been used to study memory in laboratory animals. The pre-training injection of 5 mg/kg morphine impaired memory, which was restored when 24 h later the same dose of the drug was administered. To explore the possible involvement of NMDA modulators on morphine-induced memory impairment, we have investigated the effects of intracerebroventricular (i.c.v.) administration of NMDA and the competitive NMDA antagonist, DL-AP5, on morphine-induced memory impairment or recall, on the test day. Morphine (5 mg/kg, s.c.) was administered 30 min before training to induce impairment of memory and 24 h later, 30 min before test to improve it. Pre-test administration of NMDA (0.00001, 0.0001 and 0.001 microg/mouse, i.c.v.) did not alter the retention latency compared to the saline-treated animals. But restored the memory impairment induced by pre-training morphine (5 mg/kg, s.c.). Pre-test administration of DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) by itself decreased the retention latencies. The same doses of DL-AP5 increased pre-training morphine-induced memory impairment. Co-administration of NMDA (0.0001 and 0.001 microg/mouse, i.c.v.) and morphine (5 mg/kg, s.c.) on the test day increased morphine memory improvement. Conversely, DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) inhibited morphine-induced memory recall. It is concluded that NMDA receptors may be involved, at least in part, in morphine state-dependent learning in mice.  相似文献   

18.
M Kunihara  M Ohyama  M Nakano  S Hayashi 《Life sciences》1989,45(13):1191-1198
The present study was undertaken to evaluate the analgesic potency of spiradoline mesylate, a k(kappa) opioid agonist, in comparison with that of morphine, by hot plate, tail-pinch and acetic acid-induced writhing assay. The ED50 values of spiradoline in hot plate, tail-pinch and acetic acid-induced writhing assay were 0.46, 0.26 and 0.20 mg/kg, respectively. The analgesic potency of spiradoline was 1.5-7.0 times higher than that of morphine. Repeated treatment with spiradoline as well as morphine developed tolerance to the analgesic effect in hot plate assay. In mice developed tolerance to one analgesic, response to the other analgesic did not alter compared to saline-treated mice. Single administration of spiradoline (1.5 and 3 mg/kg, s.c.) did not inhibit morphine-induced analgesia. These results suggest that spiradoline has more potent analgesic activity than morphine, presumably mediated through stimulation of receptors different from morphine.  相似文献   

19.
The experiments were carried out on white mice whose brain was irradiated transcranially with laser light in infrared range. Exposure to irradiation was 20 min. In one group of animals only laser light was used, in others laser was combined with morphine (3mg/kg), clonidine (0.5 mg/kg), and diazepam (1 mg/kg) injected intraperitoneally. The nociceptive reactions were studied with the help of "tail-flick" and "hot-plate" tests. It was found that laser light did not modify significantly the results of both tests. Moreover, it didn't influence the antinociceptive properties of morphine, clonidine and diazepam in the "hot-plate" test. In the "tail-flick" test laser light did not affect the action of clonidine, but provided naloxone-independent antinociceptive reaction with diazepam and increased the antinociceptive effect of morphine. Laser irradiation of the brain did not cause any significant morphological changes. These results suggest the possibility of modulating antinociceptive actions of morphine and diazepam by laser irradiation of the brain.  相似文献   

20.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号