首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genetic and epigenetic influences that establish and maintain the unique phenotype of the extraocular muscles (EOMs) are poorly understood. The vestibulo-ocular reflex (VOR) represents an important input into the EOMs, as it stabilizes eye position relative to the environment and provides a platform for function of all other eye movement systems. A role for vestibular cues in shaping EOM maturation was assessed in these studies using the ototoxic nitrile compound 3',3'-iminodipropionitrile (IDPN) to eliminate the receptor hair cells that drive the vestibulo-ocular reflex. Intraperitoneal injections of IDPN were followed by a 2-week survival period, after which myosin heavy chain (MyHC) analysis of the EOMs was performed. When IDPN was administered to juvenile rats, the proportion of eye muscle fibers expressing developmental and fast myosins was increased, while EOM-specific MyHC mRNA levels were downregulated. By contrast, IDPN treatment in adult rats affected only the proportion of fibers expressing developmental MyHC isoforms, leaving the EOM-specific MyHC mRNA unaltered. These data provide evidence that the VOR modulates EOM-specific MyHC expression in development. The lack of significant changes in EOM-specific MyHC expression in adult EOM following IDPN administration suggests that there may be a critical period during development when alterations in vestibular activity have significant and permanent consequences for the eye muscles.  相似文献   

3.
Seven myosin heavy chains (MyHC) are expressed in mammalian skeletal muscle in spatially and temporally regulated patterns. The timing, distribution, and quantitation of MyHC expression during development and early postnatal life of the mouse are reported here. The three adult fast MyHC RNAs (IIa, IIb, and IId/x) are expressed in the mouse embryo and each mRNA has a distinct temporal and spatial distribution. In situ hybridization analysis demonstrates expression of IIb mRNA by 14.5 dpc, which proceeds developmentally in a rostral to caudal pattern. IId/x and IIa mRNAs are detectable 2 days later. Ribonuclease protection assays demonstrate that the three adult fast genes are expressed at approximately equal levels relative to each other in the embryo but at quite low levels relative to the two developmental isoforms, embryonic and perinatal. Just after birth major changes in the relative proportions of different MyHC RNAs and protein occur. In all cases, RNA expression and protein expression appear coincident. The changes in MyHC RNA and protein expression are distinct in different muscles and are restricted in some cases to particular regions of the muscle and do not always reflect their distribution in the adult.  相似文献   

4.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

5.
6.
This study investigated the effect of arginine on skeletal muscle fiber type transformation in mice and in C2C12 myotubes. Our data showed that dietary supplementation of arginine in mice significantly up-regulated the slow myosin heavy chain (MyHC), troponin I-SS, sirtuin1 (Sirt1) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) protein expressions, as well as significantly down-regulated the fast MyHC protein expression. In C2C12 myotubes, arginine significantly increased the protein level of slow MyHC and the number of slow MyHC-positive cells, as well as significantly decreased the protein level of fast MyHC and the number of fast MyHC-positive cells. We also showed that arginine increased the activities of succinic dehydrogenase and malate dehydrogenase and decreased the activity of lactate dehydrogenase in mice and in C2C12 myotubes. Here we found that AMP-activated protein kinase (AMPK) was activated by arginine in mice and in C2C12 myotubes. However, inhibition of AMPK activity by compound C significantly attenuated the effects of arginine on slow MyHC and fast MyHC expressions in C2C12 myotubes. Finally, we showed that inhibition of Sirt1 expression by EX527 attenuated arginine-induced increase in the protein levels of phospho-AMPK and slow MyHC, the mRNA level of nitric oxide synthase (NOS) and the contents of NOS and NO, as well as decrease in fast MyHC protein level. Together, our findings indicated that arginine promotes skeletal muscle fiber type switching from fast-twitch to slow-twitch via Sirt1/AMPK pathway.  相似文献   

7.
In centrarchid fishes, such as bluegill (Lepomis macrochirus, Rafinesque) and largemouth bass (Micropterus salmoides, Lacepède), the contractile properties of feeding and swimming muscles show different scaling patterns. While the maximum shortening velocity (V(max)) and rate of relaxation from tetanus of swimming or myotomal muscle slow with growth, the feeding muscle shows distinctive scaling patterns. Cranial epaxial muscle, which is used to elevate the head during feeding strikes, retains fast contractile properties across a range of fish sizes in both species. In bass, the sternohyoideous muscle, which depresses the floor of the mouth during feeding strikes, shows faster contractile properties with growth. The objective of this study was to determine the molecular basis of these different scaling patterns. We examined the expression of two muscle proteins, myosin heavy chain (MyHC) and parvalbumin (PV), that affect contractile properties. We hypothesized that the relative contribution of slow and fast MyHC isoforms will modulate V(max) in these fishes, while the presence of PV in muscle will enhance rates of muscle relaxation. Myotomal muscle displays an increase in sMyHC expression with growth, in agreement with its physiological properties. Feeding muscles such as epaxial and sternohyoideus show no change or a decrease in sMyHC expression with growth, again as predicted from contractile properties. PV expression in myotomal muscle decreases with growth in both species, as has been seen in other fishes. The feeding muscles again show no change or an increase in PV expression with growth, contributing to faster contractile properties in these fishes. Both MyHC and PV appear to play important roles in modulating muscle contractile properties of swimming and feeding muscles in centrarchid fishes.  相似文献   

8.
9.
The fast skeletal IIb gene is the source of most myosin heavy chain (MyHC) in adult mouse skeletal muscle. We have examined the effects of a null mutation in the IIb MyHC gene on the growth and morphology of mouse skeletal muscle. Loss in muscle mass of several head and hindlimb muscles correlated with amounts of IIb MyHC expressed in that muscle in wild types. Decreased mass was accompanied by decreases in mean fiber number, and immunological and ultrastructural studies revealed fiber pathology. However, mean cross-sectional area was increased in all fiber types, suggesting compensatory hypertrophy. Loss of muscle and body mass was not attributable to impaired chewing, and decreased food intake as a softer diet did not prevent the decrease in body mass. Thus loss of the major MyHC isoform produces fiber loss and fiber pathology reminiscent of muscle disease.  相似文献   

10.
11.
12.
13.
The three adult fast myosin heavy chains (MyHCs) constitute the vast majority of the myosin in adult skeletal musculature, and are >92% identical. We describe mice carrying null mutations in each of two predominant adult fast MyHC genes, IIb and IId/x. Both null strains exhibit growth and muscle defects, but the defects are different between the two strains and do not correlate with the abundance or distribution of each gene product. For example, despite the fact that MyHC-IIb accounts for >70% of the myosin in skeletal muscle and shows the broadest distribution of expression, the phenotypes of IIb null mutants are generally milder than in the MyHC-IId/x null strain. In addition, in a muscle which expresses both IIb and IId/x MyHC in wild-type mice, the histological defects are completely different for null expression of the two genes. Most striking is that while both null strains exhibit physiological defects in isolated muscles, the defects are distinct. Muscle from IIb null mice has significantly reduced ability to generate force while IId null mouse muscle generates normal amounts of force, but has altered kinetic properties. Many of the phenotypes demonstrated by these mice are typical in human muscle disease and should provide insight into their etiology.  相似文献   

14.
15.
The objective of the current study was to examine whether sublethal (moderate) levels of dissolved ammonia may be beneficial to growth in juvenile walleye Sander vitreus (recent evidence in juvenile rainbow trout Oncorhynchus mykiss has shown significant increases in protein synthesis in the presence of moderately elevated concentrations of dissolved ammonia). Moderately elevated dissolved ammonia concentrations between 100 and 300 μmol l−1 suppressed routine aerobic metabolic activity by 20% during acute trials (2 h), while promoting specific growth rate (>50%) and elevating whole body soluble protein content by 20% in the early stages (14–42 days) in chronic ammonia exposure experiments. Juvenile S. vitreus held at ammonia concentrations between 107·6 ± 5·5 and 225·5 ± 4·7 μmol l−1 (mean ± s . e .) grew significantly faster than control fish and significantly reduced plasma cortisol levels (<3 μg dl−1). Results from this study suggest that chronic exposure to moderate amounts of dissolved ammonia significantly increase growth rates in juvenile S. vitreus by increasing nitrogen accessible for supplementary protein deposition leading to somatic development.  相似文献   

16.
Myosin in adult murine skeletal muscle is composed primarily of three adult fast myosin heavy chain (MyHC) isoforms. These isoforms, MyHC-IIa, -IId, and -IIb, are >93% identical at the amino acid level and are broadly expressed in numerous muscles, and their genes are tightly linked. Mice with a null mutation in the MyHC-IId gene have phenotypes that include growth inhibition, muscle weakness, histological abnormalities, kyphosis (spinal curvature), and aberrant kinetics of muscle contraction and relaxation. Despite the lack of MyHC-IId, IId null mice have normal amounts of myosin in their muscles because of compensation by the MyHC-IIa gene. In each muscle examined from IId null mice, there was an increase in MyHC-IIa– containing fibers. MyHC-IIb content was unaffected in all muscles except the masseter, where its expression was extinguished in the IId null mice. Cross-sectional fiber areas, total muscle cross-sectional area, and total fiber number were affected in ways particular to each muscle. Developmental expression of adult MyHC genes remained unchanged in IId null mice. Despite this universal compensation of MyHC-IIa expression, IId null mice have severe phenotypes. We conclude that despite the similarity in sequence, MyHC-IIa and -IId have unique roles in the development and function of skeletal muscle.  相似文献   

17.
Postnatal skeletal muscle fiber type is commonly defined by one of four major myosin heavy chain (MyHC) gene isoforms (slow/I, 2a, 2x, and 2b) that are expressed. We report on the novel use of combined TaqMan quantitative real-time RT-PCR and image analysis of serial porcine muscle sections, subjected to in situ hybridization (ISH) and immunocytochemistry (IHC), to quantify the mRNA expression of each MyHC isoform within its corresponding fiber type, termed relative fiber type-restricted expression. This versatile approach will allow quantitative temporospatial comparisons of each MyHC isoform among muscles from the same or different individuals. Using this approach on porcine skeletal muscles, we found that the relative fiber type-restricted expression of each postnatal MyHC gene showed wide spatial and temporal variation within a given muscle and between muscles. Marked differences were also observed among pig breeds. Notably, of the four postnatal MyHC isoforms, the 2a MyHC gene showed the highest relative fiber type-restricted expression in each muscle examined, regardless of age, breed, or muscle type. This suggests that although 2a fibers are a minor fiber type, they may be disproportionately more important as a determinant of overall muscle function than was previously believed.  相似文献   

18.
19.
20.
The aim of this study was to determine whether a period of 19 days in hypergravity was long enough to induce changes in the expression of myosin heavy chain (MyHC) isoforms in the muscle spindles. The soleus muscle of 10 male Wistar rats (control: CONT, n=5; hypergravity: HG, n=5) was frozen, cut into serial sections, and labeled with antibodies against MyHCs: I, IIA, IIA + IIX + IIB, slow-tonic, and alpha-cardiac. Forty CONT and 45 HG spindles were analyzed. The results from HG spindles compared to CONT showed that there was no change in the cross-sectional area of intrafusal fibers. However, along the entire length of B1 fibers, the expression of both MyHC I and alpha-cardiac was increased significantly, whereas the labeling against MyHC IIA and MyHC slow-tonic was decreased. In B2 fibers, the labeling against MyHC IIA (region A), slow-tonic (region A), and fast myosins (regions A-C) was statistically decreased. In chain fibers, the labeling against both MyHC IIA and fast MyHC was reduced significantly. We conclude that hypergravity has a real impact on the MyHC content in the muscle spindles and induces some inverse changes of those observed in hypogravity for MyHCs I, alpha-cardiac, and slow-tonic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号