首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Antibody binding and complement fixation by a liposomal model membrane   总被引:3,自引:0,他引:3  
  相似文献   

3.
When the major polar lipid of purple membrane, a dialkyl analogue of phosphatidyl glycerophosphate, is treated with phospholipase D under the usual assay conditions for this enzyme, the reaction yields dialkylglycerol and glycerol bisphosphate, i.e. the kind of products that would be expected from a phospholipase C reaction. The effect is seen both in native purple membranes and with the pure phospholipid in the form of liposomes. The specific activity and kinetic parameters Km and Vmax of phospholipase D for the purple membrane phospholipid are similar to those for egg phosphatidylcholine. The presence of phospholipase C impurities in the phospholipase D preparations has been ruled out as an explanation for the above observations. A hypothesis is suggested, taking into account the peculiar headgroup structure of the bacterial lipid, to explain the seemingly anomalous enzyme behavior.  相似文献   

4.
The optimally efficient production of thrombin by the prothrombinase complex relies on suitable positioning of its component factors and substrate on phosphatidylserine-containing lipid membranes. The presence of oxidatively damaged phospholipids in a membrane disrupts the normal architecture of a lipid bilayer and might therefore be expected to interfere with prothrombinase activity. To investigate this possibility, we prepared phosphatidylserine-containing lipid vesicles containing oxidized arachidonoyl lipids, and we examined their ability to accelerate thrombin production by prothrombinase. Oxidized arachidonoyl chains caused dose-dependent increases in prothrombinase activity up to 6-fold greater than control values. These increases were completely attenuated by the presence of alpha-tocopherol, gamma-tocopherol, or ascorbate. Over the course of a 300-min oxidation, the ability of arachidonoyl lipids to accelerate prothrombinase peaked at 60 min and then declined to base-line levels. These results suggest that instead of being impeded by oxidative membrane damage, prothrombinase activity is enhanced by one or more products of nonenzymatic lipid oxidation.  相似文献   

5.
Adding cholesterol to monolayers of certain phospholipids drives the separation of liquid-ordered from liquid-disordered domains. The ordered phases appear to contain stoichiometric complexes of cholesterol and phospholipid. Furthermore, it has been suggested that the cholesterol in these complexes has a low chemical activity compared to that of the free sterol; i.e., that in excess of the phospholipid binding capacity. We have now tested the hypothesis that the membrane intercalator 1-hexadecanol (HD) similarly associates with phospholipids and thereby displaces the complexed cholesterol. HD introduced into monolayers of pure dimyristoylphosphatidylcholine generated highly condensed (stable and solid) domains. In contrast, the phase behavior of mixed monolayers of the phospholipid, sterol, and alcohol suggested that HD could substitute for cholesterol mole for mole in promoting liquid-ordered domains. We also found that the transfer of cholesterol from mixed monolayers to aqueous cyclodextrin was greatly stimulated by the presence of HD, but only at levels sufficient to competitively displace the sterol from the phospholipid. This enhanced efflux was interpreted to reflect an increase in uncomplexed cholesterol. We conclude that HD forms complexes with dimyristoylphosphatidylcholine that are surprisingly similar to those of cholesterol. HD competitively displaces cholesterol from the phospholipid and thereby increases its chemical activity.  相似文献   

6.
Activation of membrane cholesterol by displacement from phospholipids   总被引:1,自引:0,他引:1  
We tested the hypothesis that certain membrane-intercalating agents increase the chemical activity of cholesterol by displacing it from its low activity association with phospholipids. Octanol, 1,2-dioctanoyl-sn-glycerol (a diglyceride), and N-hexanoyl-D-erythrosphingosine (a ceramide) were shown to increase both the rate of transfer and the extent of equilibrium partition of human red blood cell cholesterol to methyl-beta-cyclodextrin. These agents also promoted the interaction of the sterol with two cholesterol-specific probes, cholesterol oxidase and saponin. Expanding the pool of bilayer phospholipids with lysophosphatides countered these effects. The three intercalators also protected the red cells against lysis by cholesterol depletion as if substituting for the extracted sterol. As is the case for excess plasma membrane cholesterol, treating human fibroblasts with octanol, diglyceride, or ceramide stimulated the rapid inactivation of their hydroxymethylglutaryl-CoA reductase, presumably through an increase in the pool of endoplasmic reticulum cholesterol. These data supported the stated hypothesis and point to competition between cholesterol and endogenous and exogenous intercalators for association with membrane phospholipids. We also describe simple screens using red cells in a microtiter well format to identify intercalating agents that increase or decrease the activity of membrane cholesterol.  相似文献   

7.
When antibody-sensitized Escherichia coli B is treated with complement in the absence of lysozyme, bacterial phospholipids or fragments containing phospholipid appear in the surrounding medium. Almost at the start of the reaction, a little phosphatidylethanolamine (PE) appears in the lipid fraction extracted from the supernatant of the reaction mixture. Later it does not increase greatly in amount but free fatty acids (FFA) and lysophosphatidylethanolamine (LPE) appear and increase gradually. Addition of lysozyme to the reaction mixture changes the amounts of FFA and LPE released, but does not increase the numbers of the spots on a thin layer chromatogram of the lipid fraction of the supernatant. The FFA fraction contains no beta-hydroxymyristic acid from lipid A of the lipopolysaccharide complex.  相似文献   

8.
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation.  相似文献   

9.
Effect of liposomal model membrane composition on immunogenicity   总被引:6,自引:0,他引:6  
We have examined the effect of composition on the immunogenicity in mice of liposomal model membranes sensitized with dinitrophenyl-epsilon-aminocaproyl-phosphatidylethanolamine (DNP-Cap-PE) derivatives. Neither cholesterol content nor incorporation of exogenous charged amphiphile (dicetylphosphate, stearylamine) exerted a significant influence on the in vivo anti-DNP response as measured by the appearance of direct plaque-forming cells in the spleen. Similarly, the nature of the fatty acids (saturated vs unsaturated) present in DNP-Cap-PE had no effect. In contrast, the nonpolar region of the basic phospholipids comprising the liposomal bilayers played an important role as revealed by a comparative study of model membranes prepared with beef sphingomyelin (SM), egg phosphatidylcholine (PC), and synthetic distearoyl-, dimyristoyl-, dilauroyl-, and dioleoyl-phosphatidylcholines (DSPC, DMPC, DLPC, DOPC). Thus, liposomes with a large content of phospholipids possessing a high transition temperature (e.g., beef SM, DSPC) were more immunogenic than those containing phospholipids of low transition temperature (e.g., egg PC, DOPC). This correlation held for both unsonicated and sonicated liposomes. These findings may have a bearing on the phenomenon of membrane-localized antigen expression.  相似文献   

10.
Uptake and processing of liposomal phospholipids by Kupffer cells in vitro   总被引:5,自引:0,他引:5  
We investigated the intracellular metabolic fate of [Me-14C]choline-labeled phosphatidylcholines and sphingomyelin taken up by rat Kupffer cells in maintenance culture during interaction with large unilamellar liposomes composed of cholesterol, labeled choline-phospholipid and phosphatidylserine (molar ration 5:4:1). With both labeled compounds only small proportions of water-soluble radioactivity were found to accumulate in the cells and in the culture medium, suggesting limited phospholipid degradation. However, after a lag period of 30 min progressively increasing proportions of cell-associated liposomal phospholipid were found to be converted to cellular phospholipid, nearly all of which was phosphatidylcholine. This conversion as well as the limited release of water-soluble label from the cells was inhibited by the lysosomotropic agents ammonium chloride and chloroquine. With [Me-14C]choline-labeled lysophosphatidylcholine, label was found to become cell-associated far in excess of an encapsulated liposomal label, [3H]inulin. Without a lag period virtually all of this was rapidly converted to phosphatidylcholine, a process which was not inhibited by the lysosomotropic agents. It is concluded that Kupffer cells, after endocytosis of liposomes, degrade the liposomal phospholipids effectively but reutilize the choline moiety for de novo synthesis of cellular phosphatidylcholine.  相似文献   

11.
Marker release from liposomes induced by the cytolytic protein Cerebratulus lacteus toxin A-III was studied. No phospholipid specificity was apparent, but the sensitivity of liposomes to A-III varied with the membrane fluidity. With dioleylphosphatidylcholine liposomes, complete release occurred at 10-20 micrograms toxin per ml, depending on marker size. Kinetic experiments showed that release was rapid and exhibited no lag phase. The diameter of the A-III produced membrane lesion must exceed 90 A, as tetrameric Concanavalin A is quantitatively released from A-III treated liposomes.  相似文献   

12.
13.
14.
This study presents a small-scale polymerization of high molecular weight methyl methacrylate/n-butyl acrylate (MMA/n-BA) colloidal particles that are synthesized in an aqueous environment in the presence of phospholipid hydrogenated soybean phosphatidylcholine (HSPC) molecules that also serve as the particle stabilizing agents. When such particles coalesce to form polymeric films, they release phospholipids, which, in turn, form organized structures near the film-air (F-A) interface. Diffusion and mobility of phospholipid molecules are affected not only by their compatibility with colloidal particles but also by electrolyte environments of colloidal dispersions. When Na(+), K(+), and Ca(2+) counterions are added to MMA/n-BA aqueous colloidal dispersions stabilized with HSPC, and such films are coalesced, different degrees of diffusion of HSPC to the F-A interface exist, depending on the counterion, and conformational changes of HSPC result. For example, in the presence of Ca(2+), HSPC molecules collapse entropically to form random surface layers, as opposed to smaller Na(+) and K(+), which force amphiphilic HSPC ends to align preferentially parallel to the film surface. These studies show that it is possible to design stimuli-response colloidal systems triggered by chemical environments of active molecules on colloidal polymer particles.  相似文献   

15.
Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids   总被引:14,自引:0,他引:14  
The polyphenolic structures of flavonoids and isoflavonoids confer them with the ability to scavenge free radicals and to chelate transition metals, a basis for their potent antioxidant abilities. Another possible contributory mechanism toward their antioxidant activities is their ability to stabilize membranes by decreasing membrane fluidity. In this study, the effects of representative flavonoids, isoflavonoids, and their metabolites on membrane fluidity and their preferential localization in the membrane were investigated using large unilamellar vesicles (LUVs) as the membrane models. These results were compared with those of cholesterol and alpha-tocopherol. Changes in fluorescence anisotropy values for a series of n-(9-anthroyloxy) fatty acid probes (n = 6, 12, 16) upon addition of the test compounds were used to monitor alterations in membrane fluidity at graded depths in lipid bilayer. The results of the study suggest that the flavonoids and isoflavonoids, similar to cholesterol and alpha-tocopherol, partition into the hydrophobic core of the membrane and cause a dramatic decrease in lipid fluidity in this region of the membrane. Localization of flavonoids and isoflavonoids into the membrane interiors and their resulting restrictions on fluidity of membrane components could sterically hinder diffusion of free radicals and thereby decrease the kinetics of free radical reactions.  相似文献   

16.
The structure and physical properties of model membranes formed from lipids and cytochromec oxidase have been examined. The lipid-depleted protein is in the form of 90 Å rods or globules. When phospholipid is added the rods swell and then. form sheets and concentric membrane vesicles. The protein is saturated with lipid at 65 g/atoms of phosphorus per mole of hemea. Electron microscope examination by negative staining, sectioning, and freeze etching indicates a 50 Å thick unit membrane with 50–60 Å protein globules in the lipid bilayer. Infrared, circular dichroism and fluorescence binding studies are consistent with globular protein units surrounded with lipid. Diolein will substitute for phospholipid but the membrane formed remains as sheets rather than vesicles. Saturated phospholipids will not interact with the oxidase to form membrane. The capacity to form membrane is specific to protein associated with the hemea, and other insoluble protein in the original oxidase preparation cannot form membrane.  相似文献   

17.
A new method for the selective precipitation of proteins is applied to the isolation and purification of an antibody. Ligand-modified phospholipids (LMPs) are solubilized by the nonionic ethoxylated alcohol detergent, resulting in small (50 to 100 A) micellar aggregates of LMPs and surfactant. When introduced into protein solutions containing an antibody for which the LMP has specific affinity, the ligand binds to the protein. Hydrophobic interactions between phospholipid tail groups bound to the protein molecules result in an insoluble precipitate. Polyclonal and monoclonal antibiotin antibody (pABA and mABA) are shown to be selectively precipitated using ratios of dimyristoylphosphatidylethanolamidobiotin (DMPE-B) to ABA ranging from 1:1 to 19:1. The kinetics and yield of the precipitation achieve a maximum at a ratio of DMPE-B to ABA of approximately 7:1. The kinetics and magnitude of the turbidity change are modeled using the Mie theory of light scattering coupled with the smoluchowski theory of aggregation. The kinetics are shown to be enhanced significantly by the addition of salt. In particular, the addition of 0.5 M ammonium sulfate salt increases the rate of precipitation by more than an order of magnitude. It is demonstrated that pABA can be recovered with total activity yields of 60% to 70% from mixtures containing nonspecific lgG antibodies in very high purity (>99%). (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
Cytochrome C (Cyt c) is an electron transporting protein that resides within the inter-membrane space of the mitochondria. It plays a critical role as an electron carrier in the process of oxidative phosphorylation and production of cellular ATP. Cyt c is also involved in the apoptosis process and functions as a death messenger. On the other hand, it is well known that the metallo-pharmaceuticals such as palladium complex offer potential as anti-tumor agents to fight cancer. In order to identify the role of anticancer Pd complex in release of Cyt c from the biological membrane, an artificial monolayer was assembled which is able to adsorb Cyt c. A monolayer containing a mixture of two long chain thiols (mercapto-undecanoic acid and mercapto-undecanol) was self-assembled on the surface of a gold electrode. Due to the existence of both hydrophobic and electrostatic interactions between Cyt c and the assembled monolayer, this membrane could be considered as a rough analogue of the biological membrane to study the release of Cyt c by Pd complex. The electrochemical and spectroscopic studies showed that bounding of Pd complex to Cyt c causes a conformational change which leads to the release of Cyt c from the model membrane.  相似文献   

19.
The conformations of 2,3-diformylglycerol, a model compound of the diacylglycerol portion of phospholipids, were analyzed both by the classical potential function method and by the INDO molecular orbital method. The results suggest that in membranes, the conformation of the diacylglycerol portion of phospholipids is such that the two ester planes of the β- and γ-hydrocarbon chains stack in an antiparallel way with the dihedral angles β′{C(3)C(2)O(21)C(21)} ? 270° and γ1{C(2)C(3)O(31)C(31)} ? 270°.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号