首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meşe G  Londin E  Mui R  Brink PR  White TW 《Human genetics》2004,115(3):191-199
Connexins (Cx) form gap junctions that allow the exchange of small metabolites and ions. In the inner ear, Cx26 is the major gap junction protein and mutations in the Cx26-encoding gene, GJB2, are the most frequent cause of autosomal recessive non-syndromic hearing loss (DFNB1). We have functionally analyzed five Cx26 mutations associated with DFNB1, comprising the following single amino-acid substitutions: T8M, R143W, V153I, N206S and L214P. Coupling of cells expressing wild-type or mutant Cx26 was measured in the paired Xenopus oocyte assay. We found that the R143W, V153I and L214P mutations were unable to form functional channels. In contrast, the T8M and N206S mutants did electrically couple cells, though their voltage gating properties were different from wild-type Cx26 channels. The electrical coupling of oocytes expressing the T8M and N206S mutants suggest that these channels may retain high permeability to potassium ions. Therefore, deafness associated with Cx26 mutations may not only depend on reduced potassium re-circulation in the inner ear. Instead, abnormalities in the exchange of other metabolites through the cochlear gap junction network may also produce deafness.  相似文献   

2.
Mutations in GJB2 encoding the gap junction protein connexin-26 (Cx26) have been established as the basis of autosomal recessive non-syndromic hearing loss. The involvement of GJB2 in autosomal dominant deafness has also been proposed, although the putative mutation identified in one family with both deafness and palmoplantar keratoderma has recently been suggested to be merely a non-disease associated polymorphism. We have observed a similar phenotype in an Egyptian family that segregated with a heterozygous missense mutation of GJB2, leading to a non-conservative amino acid substitution (R75W). The deleterious dominant-negative effect of R75W on gap channel function was subsequently demonstrated in the paired oocyte expression system. Not only was R75W alone incapable of inducing electrical conductance between adjacent cells, but it almost completely suppressed the activity of co-expressed wildtype protein. The Cx26 mutant W77R, which has been implicated in autosomal recessive deafness, also failed to form functional gap channels by itself but did not significantly interfere with the function of wildtype Cx26. These data provide compelling evidence for the serious functional consequences of Cx26 mutations in dominant and recessive deafness. Received: 22 June 1998 / Accepted: 15 July 1998  相似文献   

3.
The physiological importance of connexin-26 (Cx26) gap junctions in regulating auditory function is indicated by the finding that autosomal recessive DFNB1 deafness is associated with mutations of the Cx26 gene. To investigate the pathogenic role of Cx26 mutation in recessive hearing loss, four putative DFNB1 Cx26 mutants (V84L, V95M, R127H, and R143W) were stably expressed in N2A cells, a communication-deficient cell line. In N2A cells expressing (R127H) Cx26 gap junctions, macroscopic junctional conductance and ability of transferring neurobiotin between transfected cells were greatly reduced. Despite the formation of defective junctional channels, immunoreactivity of (R127H) Cx26 was mainly localized in the cell membrane and prominent in the region of cell-cell contact. Mutant (V84L), (V95M), or (R143W) Cx26 protein formed gap junctions with a junctional conductance similar to that of wild-type Cx26 junctional channels. (V84L), (V95M), or (R143W) Cx26 gap junctions also permitted neurobiotin transfer between pairs of transfected N2A cells. The present study suggests that (R127H) mutation associated with hereditary sensorineural deafness results in the formation of defective Cx26 gap junctions, which may lead to the malfunction of cochlear gap junctions and hearing loss. Further studies are required to determine the exact mechanism by which mutant (V84L), (V95M), and (R143W) Cx26 proteins, which are capable of forming functional homotypic junctional channels in N2A cells, cause the cochlear dysfunction and sensorineural deafness.  相似文献   

4.
Mutations in the genes coding for connexin 26 (Cx26) and connexin 31 (Cx31) cause non-syndromic deafness. Here, we provide evidence that mutations at these two connexin genes can interact to cause hearing loss in digenic heterozygotes in humans. We have screened 108 GJB2 heterozygous Chinese patients for mutations in GJB3 by sequencing. We have excluded the possibility that mutations in exon 1 of GJB2 and the deletion of GJB6 are the second mutant allele in these Chinese heterozygous probands. Two different GJB3 mutations (N166S and A194T) occurring in compound heterozygosity with the 235delC and 299delAT of GJB2 were identified in three unrelated families (235delC/N166S, 235delC/A194T and 299delAT/A194T). Neither of these mutations in Cx31 was detected in DNA from 200 unrelated Chinese controls. Direct physical interaction of Cx26 with Cx31 is supported by data showing that Cx26 and Cx31 have overlapping expression patterns in the cochlea. In addition, by coimmunoprecipitation of mouse cochlear membrane proteins, we identified the presence of heteromeric Cx26/Cx31 connexons. Furthermore, by cotransfection of mCherry-tagged Cx26 and GFP-tagged Cx31 in human embryonic kidney (HEK)-293 cells, we demonstrated that the two connexins were able to co-assemble in vitro in the same junction plaque. Together, our data indicate that a genetic interaction between these two connexin genes can lead to hearing loss.  相似文献   

5.
Mutations in the Connexin-26 gene (Cx 26, GJB2) are the most common cause of hereditary nonsyndromic sensorineural hearing loss (SNHL). DNA analysis of the Cx 26 gene in deaf or hard-of-hearing individuals frequently demonstrates heterozygosity despite the fact that most mutations are known to be recessive. A 342-kb deletion in a gene adjacent to Cx 26, the Connexin-30 gene (Cx 30, GJB6), has been reported to cause deafness in the homozygous state or in combination with heterozygous mutations in Cx 26 (digenic inheritance). We have analyzed deaf or hard-of-hearing Cx 26 heterozygotes and individuals with no mutations in Cx 26 for this Cx 30 deletion. We found that 4/20 (20%) of the Cx 26 heterozygotes are heterozygous for this deletion and that no individuals were homozygous for the Cx 30 deletion. Cx 30 deletion analysis is recommended for all individuals with nonsyndromic SNHL following Cx 26 sequencing that does not demonstrate two recessive mutations.  相似文献   

6.
Connexin 30 (Cx30) is a component of the gap junction complex. Dominant and recessive mutations in the GJB6 gene encoding Cx30 are associated with a variety of human inherited diseases primarily affecting the epidermis, hair, nail, and/or the inner ear. The underlying mechanism of disease associated with different GJB6 mutations such as the disruption of gap junction mediated intercellular communication is unknown. Towards understanding these disease mechanisms, transfection studies were performed in a keratinocyte cell line and in HeLa cells using EGFP tagged wildtype Cx30 and mutant Cx30 constructs harbouring dominant disease-associated GJB6 mutations. For all three of the skin disease-associated Cx30 mutations investigated, impaired trafficking of the protein to the plasma membrane was observed thus preventing the formation of functional Cx30 gap junctions. In contrast, the deafness-associated mutation T5M-Cx30/EGFP trafficked to the membrane but defective channel activity was observed following dye transfer studies.  相似文献   

7.
Cx26 has been implicated in dominant (DFNA3) and recessive (DFNB1) forms of nonsyndromic sensorineural deafness. While most homozygous DFNB1 Cx26 mutations result in a simple loss of channel activity, it is less clear how heterozygous mutations in Cx26 linked to DFNA3 cause hearing loss. We have tested the ability of one dominant mutation (W44C) to interfere with wild-type human Cx26 (HCx26wt). HCx26wt induced robust electrical conductance between paired oocytes, and facilitated dye transfer between transfected HeLa cells. In contrast, oocyte pairs injected with only W44C were not electrically coupled above background levels, and W44C failed to dye couple transfected HeLa cells. Moreover, W44C dramatically inhibited intercellular conductance of HCx26wt when co-expressed in an equal ratio, and the low levels of residual conductance displayed altered gating properties. A nonfunctional recessive mutation (W77R) did not inhibit the ability of HCx26wt to form functional channels when co-injected in the same oocyte pairs, nor did it alter HCx26wt gating. These results provide evidence for a functional dominant negative effect of the W44C mutant on HCx26wt and explain how heterozygous Cx26 mutations could contribute to autosomal dominant deafness, by resulting in a net loss, and/or alteration, of Cx26 function.  相似文献   

8.
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or together in HeLa cells. When they were expressed together, Cx26 and Cx30 appeared to interact directly (by their colocalization in gap junction plaques, by coimmunoprecipitation, and by fluorescence resonance energy transfer). Scrape-loading cells that express either Cx26 or Cx30 demonstrated that Cx26 homotypic channels robustly transferred both cationic and anionic tracers, whereas Cx30 homotypic channels transferred cationic but not anionic tracers. Cells expressing both Cx26 and Cx30 also transferred both cationic and anionic tracers by scrape loading, and the rate of calcein (an anionic tracer) transfer was intermediate between their homotypic counterparts by fluorescence recovery after photobleaching. Fluorescence recovery after photobleaching also showed that Cx26 and Cx30 form functional heterotypic channels, allowing the transfer of calcein, which did not pass the homotypic Cx30 channels. Electrophysiological recordings of cell pairs expressing different combinations of Cx26 and/or Cx30 demonstrated unique gating properties of cell pairs expressing both Cx26 and Cx30. These results indicate that Cx26 and Cx30 form functional heteromeric and heterotypic channels, whose biophysical properties and permeabilities are different from their homotypic counterparts. gap junctions; hearing; fluorescence resonance energy transfer; fluorescence recovery after photobleaching; immunoprecipitation; dye transfer; electrophysiology  相似文献   

9.
In developed countries deafness has a genetic cause in over 60% of the cases. Contrastingly, in Brazil, it is estimated that only 16% of all deafnesses are caused by genetic factors. Among hereditary hearing deficiencies, approximately half is caused by mutations in the Gap Junction Protein Beta-2 (GJB2) gene, which encodes the protein Connexin 26 (Cx26). There are four mutations in this gene that present high prevalence in specific ethnical groups, namely, 35delG, 167delT, 235delC, and W24X. The 35delG mutation is the most frequent one, occurring in homozygosity or in compound heterozygosity with mutations in the GJB2 and GJB6 genes. This study aims to determine the prevalence of GJB2-35delG, GJB2-167delT, GJB2-235delC, GJB2-W24X, del (GJB6-D13S1830), and del (GJB6-D13S1854) mutations in patients with nonsyndromic deafness in the Espirito Santo State, Brazil. A total of 77 individuals were evaluated, from which 88.3% presented normal genotypes for all analyzed mutations, 1.3% were compound heterozygotes for 35delG-GJB2/D13S1830-GJB6, 1.3% were compound heterozygotes for 35delG/D13S1854-GJB6, 3.9% were homozygotes for the 35delG mutation and 5.2% were heterozygotes for 35delG/GJB2. The frequency of mutant alleles 35delG/GJB2, del (D13S1830/GJB6), and del (D13S1854/GJB6) was 7.8, 0.65, and 0.65%, respectively. Mutations 167delT, 235delC, and W24X were not detected. Determining the prevalence of specific mutations related to inherited deafness in a population can contribute to the development of more efficient and affordable molecular diagnostic protocols, and help in the genetic counseling of patients and their families.  相似文献   

10.
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.  相似文献   

11.
The hearing loss caused by GJB2 mutations is usually congenital in onset, moderate to profound in degree, and non-progressive. The objective of this study was to study genotype/phenotype correlations and to document 14 children with biallelic GJB2 mutations who passed newborn hearing screening (NHS). Genetic testing for GJB2 mutations by direct sequencing was performed on 924 individuals (810 families) with hearing loss, and 204 patients (175 families) were found to carry biallelic GJB2 mutations. NHS results were obtained through medical records. A total of 18 pathological mutations were identified, which were subclassified as eight inactivating and 10 non-inactivating mutations. p.I128M and p.H73Y were identified as novel missense GJB2 mutations. Of the 14 children with biallelic GJB2 mutations who passed NHS, eight were compound heterozygotes and 3 were homozygous for the c.235delC mutation in GJB2, and the other three combinations of non-c.235delC mutations identified were p.Y136X-p.G45E/p.V37I heterozygous, c.512ins4/p.R143W heterozygous, and p.V37I/p.R143W heterozygous. These 14 cases demonstrate that the current NHS does not identify all infants with biallelic GJB2 mutations. They suggest that the frequency of non-penetrance at birth is approximately 6.9% or higher in DFNB1 patients and provide further evidence that GJB2 hearing loss may not always be congenital in onset.  相似文献   

12.
Mutations at the DFNB1 locus which encode connexin 26 (CX26) and connexin 30 (CX30) proteins, respectively, are main cause for sporadic and familial non-syndromic hearing impairment (NSHI) in many populations. 342-kb deletion [del (GJB6-D13S1830)] of Cx30 gene is second most common connexin mutation. Specific mitochondrial DNA (mtDNA) mutations have been found to be associated with NSHI. In this study, we screened 210 NSHI patients for GJB2 mutations, ΔGJB6-D13S1830 deletion and three point mutations in mtDNA (A1555G, A3243G, A7445G) using PCR, DHPLC and sequencing in North Indian cohort. 35delG was found to be the most common mutation (10.9%), followed by W24X (3.8%) and W77X (1.9%) mutations. We did not observe GJB6-D13S1830 deletion and three mitochondrial point mutations in our cohort. Most of patients (50/58) carried monoallelic variations. Our results reveal different spectrum of GJB2 mutations specific to North Indian cohort, with 35delG being most prevalent. These results suggest that different types of GJB2 mutations affect autosomal recessive NSHI according to ethnic background.  相似文献   

13.
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Mutations in the GJB2 gene (connexin 26) represent a major cause of autosomal recessive non-syndromic hearing loss (NSHL) worldwide. In most Caucasian populations, the 35delG mutation in this gene was found to account for up to 50% of cases of the genetic non-syndromic childhood deafness. In populations of non-European ethnic background, other GJB2 gene mutations are occasionally common, e.g. 167delT in Ashkenazi Jews, R143W in Africaans and 235delC in Koreans. In this work, DNA samples from 54 unrelated NSHL patients from endogamous and inbred population of Slovak Roms (Gypsies) from Eastern Slovakia were screened for GJB2 mutations. The coding region of the GJB2 gene of patients was sequenced and mutations W24X, R127H, V153I, L90P and V37I were found. In Slovak Romany population, mutation W24X accounts for 23.2%, R127H for 19.4%, 35delG for 8.3%, V153I for 3.7%, L90P for 3.7% and V37I for 0.9% of screened chromosomes. As the W24X mutation was previously found in India and Pakistan, were from the European Romanies originate, it was brought by the European Romnanies from their Indian homeland. The carrier frequency of 35delG was estimated for Slovak non-Romany population to be 3.3%, and for Slovak Romany population to 0.88%. The carrier frequency of W24X varied in different Slovak Romany subpopulations from 0.0% up to 26.1%.  相似文献   

15.
GJB2 mutations and degree of hearing loss: a multicenter study   总被引:2,自引:0,他引:2       下载免费PDF全文
Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.  相似文献   

16.
Mutations in connexin 26 are responsible for approximately 20% of genetic hearing loss and 10% of all childhood hearing loss. However, only about 75% of the mutations predicted to be in Cx26 are actually observed. While this may be due to mutations in noncoding regulatory regions, an alternative hypothesis is that some cases may be due to mutations in another gene immediately adjacent to Cx26. Another gap junction gene, connexin 30 (HGMW-approved symbol GJB6), is found to lie on the same PAC clone that hybridizes to chromosome 13q12. Human connexin 26 and connexin 30 are expressed in the same cells of the cochlea. Cx26 and Cx30 share 77% identity in amino acid sequence but Cx30 has an additional 37 amino acids at its C-terminus. These considerations led us to hypothesize that mutations in Cx30 might also be responsible for hearing loss. Eight-eight recessive nonsyndromic hearing loss families from both American and Japanese populations were screened for mutations. In addition, 23 dominant hearing loss families and 6 singleton families presumed to be recessive were tested. No significant mutation has been found in the dominant or recessive families.  相似文献   

17.
A number of genes responsible for hearing loss are related to ion recycling and homeostasis in the inner ear. Connexins (Cx26 encoded by GJB2, Cx31 encoded by GJB3 and Cx30 encoded by GJB6) are core components of gap junctions in the inner ear. Gap junctions are intercellular communication channels and important factors that are associated with hearing loss. To date, a molecular genetics study of GJB3 and GJB6 as a causative gene for hearing loss has not been performed in Korea. This study was therefore performed to elucidate the genetic characteristics of Korean patients with nonsyndromic sensorineural hearing loss and to determine the pathological mechanism of hearing loss by analyzing the intercellular communication function of Cx30 and Cx31 variants. Sequencing analysis of the GJB3 and GJB6 genes in our population revealed a total of nine variants, including four novel variants in the two genes. Three of the novel variants (Cx31-p.V27M, Cx31-p.V43M and Cx-30-p.I248V) and two previously reported variants (Cx31-p.V84I and Cx30-p.A40V) were selected for functional studies using a pathogenicity prediction program and assessed for whether the mutations were located in a conserved region of the protein. The results of biochemical and ionic coupling tests showed that both the Cx31-p.V27M and Cx31-p.V84I variants did not function normally when each was expressed as a heterozygote with the wild-type Cx31. This study demonstrated that two variants of Cx31 were pathogenic mutations with deleterious effect. This information will be valuable in understanding the pathogenic role of GJB3 and GJB6 mutations associated with hearing loss.  相似文献   

18.
Oculodentodigital dysplasia (ODDD) is a dominantly inherited human disorder associated with different symptoms like craniofacial anomalies, syndactyly and heart dysfunction. ODDD is caused by mutations in the GJA1 gene encoding the gap junction protein connexin43 (Cx43). Here, we have characterized four Cx43 mutations (I31M, G138R, G143S and H194P) after stable expression in HeLa cells. In patients, the I31M and G138R mutations showed all phenotypic characteristics of ODDD, whereas G143S did not result in facial abnormalities and H194P mutated patients exhibited no syndactylies. In transfected HeLa cells, these mutations led to lack of the P2 phosphorylation state of the Cx43 protein, complete inhibition of gap junctional coupling measured by neurobiotin transfer and increased hemichannel activity. In addition, altered trafficking and delayed degradation were found in these mutants by immunofluorescence and pulse-chase analyses. In G138R and G143S mutants, the increased hemichannel activity correlated with an increased half-time of the Cx43 protein. However, the I31M mutated protein showed no extended half-time. Thus, the increased hemichannel activity may be directly caused by an altered conformation of the mutated channel forming protein. We hypothesize that increased hemichannel activity may aggravate the phenotypic abnormalities in ODDD patients who are deficient in Cx43 gap junction channels. Radoslaw Dobrowolski and Annette Sommershof contributed equally to this work.  相似文献   

19.
Mutations in the GJB2 gene, encoding the gap-junction channel protein connexin 26, account for the majority of recessive forms and some of the dominant cases of deafness. Here, we report the frequency of GJB2 alleles in the Italian population affected by hearing loss and the functional analysis of six missense mutations. Genetic studies indicate that, apart from the common 35delG, only few additional mutations can be detected with a significant frequency in our population. Transfection of communication-incompetent HeLa cells with Cx26 missense mutations revealed three distinct classes of functional deficits in terms of protein expression, subcellular localisation and/or functional activity. Moreover, the M34T mutant acted as a dominant inhibitor of wild-type Cx26 channel activity when the two proteins were co-expressed in a manner mimicking a heterozygous genotype. These data support the hypothesis of a functional role for M34T as a dominant allele and represent a further step towards a complete understanding of the role of GJB2 in causing hearing loss.  相似文献   

20.
Genetically caused deafness is a common trait affecting one in 1000 children and is predominantly inherited in an autosomal-recessive fashion. Several mutations in the GJB2 gene and a deletion of 342 kb in GJB6 gene (delGJB6-D13S1830) have been identified worldwide in patients with hearing impairment. In the present study, 303 nonsyndromic hearing-impaired patients (140 familial; 163 sporadic) were examined clinically and screened for mutations in GJB2 and GJB6 genes. Mutations in GJB2 gene were found in 33 (10.9%) patients of whom six (18.2%) were carriers for the mutant allele. The most frequent mutation was p.W24X accounting for 87% of the mutant alleles. In addition, six other sequence variations were identified in the GJB2 gene viz., c.IVS1+1G>A, c.167delT, c.235delC, p.W77X, p.R127H (polymorphism), p.M163V. None of the samples showed del(GJB6-D13S1830) or any point mutations in GJB6 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号