首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Corticotropin-releasing factor (CRF) is involved in a variety of physiological functions including regulation of hypothalamo-pituitary-adrenal axis activity during stressful periods. Urocortins (Ucns) are known to be members of the CRF family peptides. CRF has a high affinity for CRF receptor type 1 (CRF(1) receptor). Both Ucn2 and Ucn3 have very high affinity for CRF receptor type 2 (CRF(2) receptor) with little or no binding affinity for the CRF(1) receptor. Gonadotropin-releasing hormone (GnRH) is known to be involved in the regulation of the stress response. Gonadotropin-inhibitory hormone (GnIH) neurons interact directly with GnRH neurons, and the action of GnIH is mediated by a novel G-protein coupled receptor, Gpr147. This study aimed to explore the possible function of CRF family peptides and the regulation of GnRH mRNA in hypothalamic GnRH cells. Both mRNA and protein expression of the CRF(1) receptor and CRF(2) receptor were found in hypothalamic GnRH N39 cells. CRF suppressed GnRH mRNA levels via the CRF(1) receptor, while Ucn2 increased the levels via the CRF(2) receptor. Both CRF and Ucn2 increased Gpr147 mRNA levels. The results indicate that CRF and Ucn2 can modulate GnRH mRNA levels via each specific CRF receptor subtype. Finally, CRF suppressed GnRH protein levels, while Ucn2 increased the levels. Differential regulation of GnRH by CRF family peptides may contribute to the stress response and homeostasis in GnRH cells.  相似文献   

2.
In social animals, hierarchical rank governs food availability, territorial rights and breeding access. Rank order can change rapidly and typically depends on dynamic aggressive interactions. Since the neuromodulator corticotrophin releasing factor (CRF) integrates internal and external cues to regulate the hypothalamic-pituitary adrenal (HPA) axis, we analyzed the CRF system during social encounters related to status. We used a particularly suitable animal model, African cichlid fish, Astatotilapia burtoni, whose social status regulates reproduction. When presented with an opportunity to rise in rank, subordinate A. burtoni males rapidly change coloration, behavior, and their physiology to support a new role as dominant, reproductively active fish. Although changes in gonadotropin-releasing hormone (GnRH1), the key reproductive molecular actor, have been analyzed during social ascent, little is known about the roles of CRF and the HPA axis during transitions. Experimentally enabling males to ascend in social rank, we measured changes in plasma cortisol and the CRF system in specific brain regions 15 minutes after onset of social ascent. Plasma cortisol levels in ascending fish were lower than subordinate conspecifics, but similar to levels in dominant animals. In the preoptic area (POA), where GnRH1 cells are located, and in the pituitary gland, CRF and CRF1 receptor mRNA levels are rapidly down regulated in ascending males compared to subordinates. In the Vc/Vl, a forebrain region where CRF cell bodies are located, mRNA coding for both CRFR1 and CRFR2 receptors is lower in ascending fish compared to stable subordinate conspecifics. The rapid time course of these changes (within minutes) suggests that the CRF system is involved in the physiological changes associated with shifts in social status. Since CRF typically has inhibitory effects on the neuroendocrine reproductive axis in vertebrates, this attenuation of CRF activity may allow rapid activation of the reproductive axis and facilitate the transition to dominance.  相似文献   

3.
Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?  相似文献   

4.
Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction.  相似文献   

5.
6.
Comprehensive studies have provided a clear understanding of the effects of gonadal steroids on the secretion of gonadotropin releasing hormone (GnRH), but some inconsistent results exist with regard to effects on synthesis. It is clear that regulation of both synthesis and the secretion of GnRH are effected by neurotransmitter systems in the brain. Thus, steroid regulation of GnRH synthesis and secretion can be direct, but the predominant effects are transmitted through steroid-responsive neuronal systems in various parts of the brain. There is also emerging evidence of direct effects on GnRH cells. Overriding effects on synthesis and secretion of GnRH can be observed during aging, in undernutrition and under stressful situations; these involve various neuronal systems, which may have serial or parallel effects on GnRH cells. The effect of aging is accompanied by changes in GnRH synthesis, but comprehensive studies of synthesis during undernutrition and stress are less well documented. Altered GnRH and gonadotropin secretion that occurs in seasonal breeding animals and during the pubertal transition is not generally accompanied by changes in GnRH synthesis. Secretion of GnRH from the brain is a reflection of the inherent function of GnRH cells and the inputs that integrate all of the central regulatory elements. Ultimately, the pattern of secretion dictates the reproductive status of the organism. In order to fully understand the central mechanisms that control reproduction, more extensive studies are required on the neuronal circuitry that provides input to GnRH cells.  相似文献   

7.
The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.  相似文献   

8.
Direct innervation of GnRH neurons by encephalic photoreceptors in birds   总被引:1,自引:0,他引:1  
In nonmammalian vertebrates, photic cues that regulate the timing of seasonal reproductive cyclicity are detected by nonretinal, nonpineal deep brain photoreceptors. It has long been assumed that the underlying mechanism involves the transmission of photic information from the photoreceptor to a circadian system, and thence to the reproductive axis. An alternative hypothesis is that there is direct communication between the brain photoreceptor and the reproductive axis. In the present study, light and confocal microscopy reveal that gonadotropin releasing hormone (GnRH) neurons and processes are scattered among photoreceptor cells (identified by their opsin-immunoreactivity) in the lateral septum (SL). In the median eminence (ME), opsin and GnRH immunoreactive fibers overlap extensively. Single and double label ultrastructural immunocytochemistry indicate that in the SL and preoptic area (POA), opsin positive terminals form axo-dendritic synapses onto GnRH dendrites. In the ME, opsin and GnRH terminals lie adjacent to each other, make contact with tanycytes, or terminate on the hypophyseal portal capillaries. These results reveal thatbrain photoreceptors communicate directly with GnRH-neurons; this represents a means by which photoperiodic information reaches the reproductive axis.  相似文献   

9.
10.
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.  相似文献   

11.
IGF-1 in the brain as a regulator of reproductive neuroendocrine function   总被引:4,自引:0,他引:4  
Given the close relationship among neuroendocrine systems, it is likely that there may be common signals that coordinate the acquisition of adult reproductive function with other homeostatic processes. In this review, we focus on central nervous system insulin-like growth factor-1 (IGF-1) as a signal controlling reproductive function, with possible links to somatic growth, particularly during puberty. In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty. Gonadotropin-releasing hormone is released in pulses from neuroterminals in the median eminence (ME), and each GnRH pulse triggers the production of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These pituitary hormones in turn stimulate the synthesis and release of sex steroids by the gonads. Any factor that affects GnRH or gonadotropin pulsatility is important for puberty and reproductive function and, among these factors, the neurotrophic factor IGF-1 is a strong candidate. Although IGF-1 is most commonly studied as the tertiary peripheral hormone in the somatotropic axis via its synthesis in the liver, IGF-1 is also synthesized in the brain, within neurons and glia. In neuroendocrine brain regions, central IGF-1 plays roles in the regulation of neuroendocrine functions, including direct actions on GnRH neurons. Moreover, GnRH neurons themselves co-express IGF-1 and the IGF-1 receptor, and this expression is developmentally regulated. Here, we examine the role of IGF-1 acting in the hypothalamus as a critical link between reproductive and other neuroendocrine functions.  相似文献   

12.
RFRP-3对哺乳动物生殖功能和能量平衡的影响   总被引:1,自引:0,他引:1  
Xiang W  Lai P  Zhang BY  Wang PQ  Chu MX  Fan Q  Liu CX  Tan Y 《遗传》2012,34(8):969-976
哺乳动物的生殖功能受体内状态和外部环境综合作用的影响,这种综合作用通过作用于HPG轴的刺激因子和抑制因子之间的相对平衡来调控生殖。RFRP-3是目前下丘脑中唯一已知的HPG轴抑制因子。大量研究证实,RFRP-3能够抑制GnRH和LH的分泌,进而影响生殖功能。然而,RFRP-3对LH分泌的抑制作用是发生在垂体水平还是下丘脑水平尚不清楚。此外,RFRP-3还可能参与了MLT对哺乳动物季节性繁殖调控的信号通路,但是MLT对RFRP-3神经元的作用方式仍不清楚。此外,RFRP-3还可能在能量平衡和动物行为的调控中发挥着重要作用。文章就RFRP-3对HPG轴的调节机制以及其在能量平衡调节和行为调控中的作用进行了系统的阐述,并针对目前尚待解决的一些问题进行了探讨。  相似文献   

13.
The pivotal role of gonadotropin-releasing hormone (GnRH) during the hormonal regulation of reproductive processes is indisputable. Likewise, many factors are known to affect reproductive function by influencing either GnRH release from hypothalamus or pituitary gland responsiveness to GnRH. In veterinary medicine, GnRH and its agonists (GnRHa) are widely used to overcome reduced fertility by ovarian dysfunction, to induce ovulation, and to improve conception rate. GnRHa are, moreover, integrative part of other pro-fertility treatments, e.g. for synchronization of the estrous cycle or stimulation for embryo transfer. Additionally, continuous GnRH which shows desensitizing effects of the pituitary-ovarian axis has been recommended for implementation in anti-fertility treatments like inhibition of ovulation or reversible blockade of the estrous cycle. Just as much, another group of GnRH analogues, antagonists, are now in principle disposable for use. For a few decades, GnRH was thought to be a unique structure with a primary role in regulation gonadotropins. However, it became apparent that other homologous ligands of the GnRH receptor (GnRHR) exist. In the meantime, more than 20 natural variants of the mammalian GnRH have been identified in different species which may compete for binding and/or have their own receptors. These GnRH forms (GnRHs) have apparently common and divergent functions. More studies on GnRHs should contribute to a better understanding of reproductive processes in mammals and interactions between reproduction and other physiological functions. Increased information on GnRHs might raise expectations in the application of these peptides in veterinary practice. It is the aim of this review to discuss latest results from evolutionarily based studies as well as first experimental tests and to answer the question how realistic might be the efforts to develop effective and animal friendly practical applications for endogenous GnRHs and synthetic analogues.  相似文献   

14.

Background

Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic–Pituitary–Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis.

Methods

Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. Results: MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice.

Conclusions

MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.  相似文献   

15.
This study was designed to evaluate the potential of using eCG or GnRH in restoring reproductive functions in GnRH immunized ewes. Thirty-three multiparous Kivircik ewes were randomly assigned into either control group (n=11) or immunization group (n=22). Ewes were immunized against GnRH by injecting with a cocktail of ovalbumin-LHRH-7 (ovalbumin-GnRH-7) and thioredoxin-LHRH-7 (thioredoxin-GnRH-7) fusion proteins generated by recombinant DNA technology in April. 500 IU eCG or 0.008 mg GnRH analogue was used to induce ovulations. Serum GnRH antibodies were present in animals of the immunized group beginning the second week after the first immunization and maintained throughout the study (14 months). Immunization caused anestrus in immunized ewes. eCG or GnRH analogue administration given after 14 days progestagen (20 mg fluorogestone acetate, FGA) treatment during breeding season (mid July) did not induce ovulation in these ewes. Two more attempts with single or multiple eCG injections failed to induce ovulation in this group as well. It appears that the gonadotropin stimulation was not of adequate time since neither eCG nor GnRH administration was able to restore reproductive function in immunized animals. The immunization effect lasted more than a year. These results suggest that GnRH immunization exerts its effect via the hypothalamo-pituitary axis and that more than such stimulation is required to overcome the reproductive suppression.  相似文献   

16.
The role of LH in luteal function in pregnant dogs was investigated at two different periods during pregnancy: (i) the transitional period from apparent total independence of the corpus luteum to relative hormonal dependence (days 20-35); and (ii) the period of full hormonal dependence (days 35-40). At both periods, LH neutralization, LH inhibition and LH administration studies were conducted. At both periods LH immunoneutralization had no significant effect on the secretion pattern of progesterone or prolactin. GnRH antagonist treatment (Nal-Glu) decreased plasma LH below the detection limit in all treatment periods. Nal-Glu had no effect on prolactin. When GnRH antagonist osmotic pumps were implanted, a transient decrease in plasma progesterone concentrations occurred on days 21-22 but not during the remaining implantation period. When GnRH antagonist was injected, plasma progesterone temporarily decreased (24 h) after the beginning of treatment starting on day 20, but decreased for 5 days when the treatment started on day 35. When purified pig LH was injected i.v. twice a day for 2 consecutive days either from day 30 or from day 40, plasma progesterone concentrations remained constant during treatment. However, on days 40 and 41, an increase in prolactin was observed. These results indicate that LH immunoneutralization may not impair corpus luteum function. In addition, GnRH antagonist induces dose- and time-dependent effects. Only high doses resulted in a decrease in progesterone, the duration of which increased as pregnancy progressed. Continuous GnRH antagonist administration, even when associated with complete LH inhibition, was not associated with detectable effects on progesterone. Finally, LH administration does not stimulate progesterone but may modify prolactin in the last third of pregnancy. Other studies indicated a corpus luteum prolactin dependency. The present study indicates that, in pregnant bitches, LH may not be necessary to sustain progesterone synthesis but that its role may vary in a time-dependent manner.  相似文献   

17.
Modern methods of diagnosis have made the distinction between hypothalamic failure and ovarian failure routine. Failure of the orderly progression of hypothalamic gonadotrophin-releasing hormone (GnRH) → pituitary gonadotrophins → ovarian steroids and inhibin → hypothalamus/pituitary results in anovulation/amenorrhea. The hypothalamic connections that regulate the pattern and amplitude of GnRH pulses are plastic and respond to external/psychological conditions and internal/metabolic factors that may affect the hypothalamic substrate on which estrogen levels can act. We trace the neuroendocrine regulation of the ovarian cycle, concentrating on hypothalamic connections that underlie negative and positive feedback control of GnRH and the complementary role of the adenohypophysis. The main hormone regulating this "central axis" and the development of the endometrium is estradiol which is exported from the developing ovarian follicles and thereby closes the feedback loop with follicle development. Progesterone and inhibin are also involved. Neuroendocrine responses to internal and external factors can cause anovulation and amenorrhea. Generally, these are accompanied by abnormal negative feedback between estradiol and the gonadotrophins; coexistence of low estradiol and luteinizing hormone/follicle-stimulating hormone. There are three main causes: (1) genetic diseases that interfere with the migration of GnRH cells into the brain or result in misfolding of GnRH; (2) input from the brain that interrupts normal feedback (e.g. stress and weight loss amenorrhea); and (3) the effect of agents which alter central neurotransmission and hypothalamic function (e.g. elevated prolactin and psychotropic medications). All types of hypothalamic insufficiency result in insufficient stimulation of the ovaries. In addition to amenorrhea, this central alteration also results in other complications (downstream disease) that make hypothalamic amenorrhea of greater consequence than simply reproductive failure. Thus, there may be more at stake in the diagnosis and treatment of hypothalamic failure than brings the patient to her caregiver.  相似文献   

18.
Within the hypothalamic-pituitary-gonad (HPG) axis, the major hierarchical component is gonadotropin-releasing hormone (GnRH) neurons, which directly or indirectly receive regulatory inputs from a wide array of regulatory signals and pathways, involving numerous circulating hormones, neuropeptides, and neurotransmitters, and which operate as a final output for the brain control of reproduction. In recent years, there has been an increasing interest in neuropeptides that have the potential to stimulate or inhibit GnRH in the hypothalamus of pigs. Among them, Kisspeptin is a key component in the precise regulation of GnRH neuron secretion activity. Besides, other neuropeptides, including neurokinin B (NKB), neuromedin B (NMB), neuromedin S (NMS), α-melanocyte-stimulating hormone (α-MSH), Phoenixin (PNX), show potential for having a stimulating effect on GnRH neurons. On the contrary, RFamide-related peptide-3 (RFRP-3), endogenous opioid peptides (EOP), neuropeptide Y (NPY), and Galanin (GAL) may play an inhibitory role in the regulation of porcine reproductive nerves and may directly or indirectly regulate GnRH neurons. By combining data from suitable model species and pigs, we aim to provide a comprehensive summary of our current understanding of the neuropeptides acting on GnRH neurons, with a particular focus on their central regulatory pathways and underlying molecular basis.  相似文献   

19.
The aetiology of neuroblastoma remains obscure, although a number of neuropeptides have been implicated in its pathogenesis. Using the mouse neuroblastoma cell line Neuro2a as a model, we have investigated the mitogenic actions of prolactin (PRL) and two hypothalamo-pituitary-adrenal stress axis hormones, corticotropin-releasing factor (CRF) and corticosterone. Using established polyclonal PRL receptor antisera with immunofluorescence cytochemistry, we show that the Neuro2a cells possess immunoreactive forms of both the long and short forms of the receptor. PRL and CRF were effective as mitogens in Neuro2a cell cultures, where a 10(-7) M concentration of PRL or CRF elicited a two-fold increase in the numbers of cells after 72 h (p < 0.0001). Corticosterone, however, attenuated their proliferation. These data suggest that prolactin may act to increase the proliferation and regulation of neuroblastomas and that the effects of PRL may be modified by hypothalamo-pituitary-adrenal hormones.  相似文献   

20.
哺乳动物的生殖功能受体内状态和外部环境综合作用的影响,这种综合作用通过错综复杂的神经内分泌系统最终汇集于促性腺激素释放激素(GnRH)系统从而影响下丘脑-垂体-性腺(HPG)轴的状态。神经激肽B(NKB)目前被认为是除kisspeptin外,调控GnRH脉冲分泌的又一关键因子。大量研究证实,NKB能够影响GnRH和促黄体激素(LH)的分泌,进而影响青春期的启动和生殖功能。然而,NKB对LH分泌的影响是刺激作用还是抑制作用尚存在争论。此外,NKB如何作用于GnRH神经元的信号通路尚不清楚,性激素是否参与这一生理过程,是目前的研究热点问题之一。本文就NKB及其受体的分布、神经网络结构、NKB对GnRH脉冲发生器的作用进行了系统的阐述,并针对目前尚待解决的一些问题进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号