首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image motion is a primary source of visual information about the world. However, before this information can be used the visual system must determine the spatio-temporal displacements of the features in the dynamic retinal image, which originate from objects moving in space. This is known as the motion correspondence problem. We investigated whether cross-cue matching constraints contribute to the solution of this problem, which would be consistent with physiological reports that many directionally selective cells in the visual cortex also respond to additional visual cues. We measured the maximum displacement limit (Dmax) for two-frame apparent motion sequences. Dmax increases as the number of elements in such sequences decreases. However, in our displays the total number of elements was kept constant while the number of a subset of elements, defined by a difference in contrast polarity, binocular disparity or colour, was varied. Dmax increased as the number of elements distinguished by a particular cue was decreased. Dmax was affected by contrast polarity for all observers, but only some observers were influenced by binocular disparity and others by colour information. These results demonstrate that the human visual system exploits local, cross-cue matching constraints in the solution of the motion correspondence problem.  相似文献   

2.
Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors. Based on their stratification in the different layers of the lobula plate, the columnar cells T4 and T5 are likely candidates to provide some of this input. To study their role in motion detection, we performed whole-cell recordings from LPTCs in Drosophila with T4 and T5 cells blocked using two different genetically encoded tools. In these flies, motion responses were abolished, while flicker responses largely remained. We thus demonstrate that T4 and T5 cells indeed represent those columnar cells that provide directionally selective motion information to LPTCs. Contrary to previous assumptions, flicker responses seem to be largely mediated by a third, independent pathway. This work thus represents a further step towards elucidating the complete motion detection circuitry of the fly.  相似文献   

3.
When viewing two superimposed, translating sets of dots moving in different directions, one overestimates direction difference. This phenomenon of direction repulsion is thought to be driven by inhibitory interactions between directionally tuned motion detectors. However, there is disagreement on where this occurs-at early stages of motion processing, when local motions are extracted; or at the later, global motion-processing stage following "pooling" of these local measures. These two stages of motion processing have been identified as occurring in area V1 and the human homolog of macaque MT/V5, respectively. We designed experiments in which local and global predictions of repulsion are pitted against one another. Our stimuli contained a target set of dots, moving at a uniform speed, superimposed on a "mixed-speed" distractor set. Because the perceived speed of a mixed-speed stimulus is equal to the dots' average speed, a global-processing account of direction repulsion predicts that repulsion magnitude induced by a mixed-speed distractor will be indistinguishable from that induced by a single-speed distractor moving at the same mean speed. This is exactly what we found. These results provide compelling evidence that global-motion interactions play a major role in driving direction repulsion.  相似文献   

4.
Some computational theories of motion perception assume that the first stage en route to this perception is the local estimate of image velocity. However, this assumption is not supported by data from the primary visual cortex. Its motion sensitive cells are not selective to velocity, but rather are directionally selective and tuned to spatio-temporal frequencies. Accordingly, physiologically based theories start with filters selective to oriented spatio-temporal frequencies. This paper shows that computational and physiological theories do not necessarily conflict, because such filters may, as a population, compute velocity locally. To prove this point, we show how to combine the outputs of a class of frequency tuned filters to detect local image velocity. Furthermore, we show that the combination of filters may simulate 'Pattern' cells in the middle temporal area (MT), whereas each filter simulates primary visual cortex cells. These simulations include three properties of the primary cortex. First, the spatio-temporal frequency tuning curves of the individual filters display approximate space-time separability. Secondly, their direction-of-motion tuning curves depend on the distribution of orientations of the components of the Fourier decomposition and speed of the stimulus. Thirdly, the filters show facilitation and suppression for responses to apparent motions in the preferred and null directions, respectively. It is suggested that the MT's role is not to solve the aperture problem, but to estimate velocities from primary cortex information. The spatial integration that accounts for motion coherence may be postponed to a later cortical stage.  相似文献   

5.
J B Demb  K Zaghloul  P Sterling 《Neuron》2001,32(4):711-721
We perceive motion when presented with spatiotemporal changes in contrast (second-order cue). This requires linear signals to be rectified and then summed in temporal order to compute direction. Although both operations have been attributed to cortex, rectification might occur in retina, prior to the ganglion cell. Here we show that the Y ganglion cell does indeed respond to spatiotemporal contrast modulations of a second-order motion stimulus. Responses in an OFF ganglion cell are caused by an EPSP/IPSP sequence evoked from within the dendritic field; in ON cells inhibition is indirect. Inhibitory effects, which are blocked by tetrodotoxin, clamp the response near resting potential thus preventing saturation. Apparently the computation for second-order motion can be initiated by Y cells and completed by cortical cells that sum outputs of multiple Y cells in a directionally selective manner.  相似文献   

6.
A survey study of organelle movements in a variety of cell types of plant and animal origin was made with the aid of video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy followed by fine analysis of the motile behavior of the individual organelles. We found that there exists besides Brownian motion a wide spectrum of active motions in cells, i.e. motion that is directionally biased through the expenditure of metabolic energy. The types of active motion seen range from a continuous motion (sometimes appearing as streaming) in plant cells and neurons to various types of less ordered and less well directed motion. We did not see any clear-cut qualitative difference between plant and animal cells or between systems presumed to be actin- and microtubule-based. A preliminary classification of the types of active motion is presented. The ongoing research activities, which aim at a more precise definition of the different types of motion by a set of quantitative parameters, are described, and the progress made so far is reported.  相似文献   

7.
In the compensatory optomotor response of the fly the interesting phenomenon of gain control has been observed by Reichardt and colleagues (Reichardt et al., 1983): The amplitude of the response tends to saturate with increasing stimulus size, but different saturation plateaus are assumed with different velocities at which the stimulus is moving. This characteristic can already be found in the motion-sensitive large field neurons of the fly optic lobes that play a role in mediating this behavioral response (Hausen, 1982; Reichardt et al, 1983; Egelhaaf, 1985; Haag et al., 1992). To account for gain control a model was proposed involving shunting inhibition of these cells by another cell, the so-called pool cell (Reichardt et al., 1983), both cells sharing common input from an array of local motion detectors. This article describes an alternative model which only requires dendritic integration of the output signals of two types of local motion detectors with opposite polarity. The explanation of gain control relies on recent findings that these input elements are not perfectly directionally selective and that their direction selectivity is a function of pattern velocity. As a consequence, the resulting postsynaptic potential in the dendrite of the integrating cell saturates with increasing pattern size at a level between the excitatory and inhibitory reversal potentials. The exact value of saturation is then set by the activation ratio of excitatory and inhibitory input elements which in turn is a function of other stimulus parameters such as pattern velocity. Thus, the apparently complex phenomenon of gain control can be simply explained by the biophysics of dendritic integration in conjunction with the properties of the motion-sensitive input elements.  相似文献   

8.
The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster has made them a model system for the study of neuronal cell-fate determination, axonal path finding, and target selection. For functional studies, however, the small size of the constituting visual interneurons has so far presented a formidable barrier. We have overcome this problem by establishing in vivo whole-cell recordings from genetically targeted visual interneurons of Drosophila. Here, we describe the response properties of six motion-sensitive large-field neurons in the lobula plate that form a network consisting of individually identifiable, directionally selective cells most sensitive to vertical image motion (VS cells). Individual VS cell responses to visual motion stimuli exhibit all the characteristics that are indicative of presynaptic input from elementary motion detectors of the correlation type. Different VS cells possess distinct receptive fields that are arranged sequentially along the eye's azimuth, corresponding to their characteristic cellular morphology and position within the retinotopically organized lobula plate. In addition, lateral connections between individual VS cells cause strongly overlapping receptive fields that are wider than expected from their dendritic input. Our results suggest that motion vision in different dipteran fly species is accomplished in similar circuitries and according to common algorithmic rules. The underlying neural mechanisms of population coding within the VS cell network and of elementary motion detection, respectively, can now be analyzed by the combination of electrophysiology and genetic intervention in Drosophila.  相似文献   

9.
Tseng Y  Kole TP  Wirtz D 《Biophysical journal》2002,83(6):3162-3176
This paper introduces the method of live-cell multiple-particle-tracking microrheology (MPTM), which quantifies the local mechanical properties of living cells by monitoring the Brownian motion of individual microinjected fluorescent particles. Particle tracking of carboxylated microspheres imbedded in the cytoplasm produce spatial distributions of cytoplasmic compliances and frequency-dependent viscoelastic moduli. Swiss 3T3 fibroblasts are found to behave like a stiff elastic material when subjected to high rates of deformations and like a soft liquid at low rates of deformations. By analyzing the relative contributions of the subcellular compliances to the mean compliance, we find that the cytoplasm is much more mechanically heterogeneous than reconstituted actin filament networks. Carboxylated microspheres embedded in cytoplasm through endocytosis and amine-modified polystyrene microspheres, which are microinjected or endocytosed, often show directed motion and strong nonspecific interactions with cytoplasmic proteins, which prevents computation of local moduli from the microsphere displacements. Using MPTM, we investigate the mechanical function of alpha-actinin in non-muscle cells: alpha-actinin-microinjected cells are stiffer and yet mechanically more heterogeneous than control cells, in agreement with models of reconstituted cross-linked actin filament networks. MPTM is a new type of functional microscopy that can test the local, rate-dependent mechanical and ultrastructural properties of living cells.  相似文献   

10.
The present paper proposes a mathematical theory and a method of recognition of both the 3D structure and the motion of a moving object from its monocular image. Initially, characteristic features are extracted from the 2D perspective image of the object. Because motion of the object induces a change in its 2D perspective image, it also induces a change in the features which depends on the 3D structure and the velocity of the object. This suggests the possibility of detecting the 3D structure and the motion directly from the features and their changing rate, without the need for calculating optical flows. An analysis is made of the relation between the 3D rigid motion of a surface element and the change in local linear features. From this relation, a method is proposed for calculating the velocity of and the normal to the surface element without considering any correspondence of points. An optical flow can also be calculated by this method. Two simple computer simulations are provided.  相似文献   

11.
对地贫红细胞的显微激光散射和图象分析   总被引:4,自引:0,他引:4  
应用显微准弹性激光散射(MQLS)技术与显微生物医学图象分析技术对地中海贫血红细胞及胞内血红蛋白动态特性进行了研究.在实验中,比较了正常人及地贫患者红细胞胞内血红蛋白聚集体的平均流体力学半径、平均平动扩散系数及红细胞膜的搏动频率等动态特性参数,以及细胞的截面积、规化形状因子、长径、短径、灰度等图象分析数据,发现地贫红细胞的血红蛋白聚合物平均流体力学半径远远大于正常人红细胞的,其大小变异亦较正常人大,且其膜搏动频率也较为缓慢,细胞的截面积也变小.这反映了地贫红细胞内有较大的蛋白质聚合物存在和红细胞变形能力差的特性.研究还表明,显微准弹性激光散射技术结合图象分析技术,可使测量的可比性和准确性大大提高,预期可广泛适用于各种活细胞动态特性的研究.  相似文献   

12.
Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells'' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.  相似文献   

13.
This study proposes a novel adaptive mesh expansion model (AMEM) for liver segmentation from computed tomography images. The virtual deformable simplex model (DSM) is introduced to represent the mesh, in which the motion of each vertex can be easily manipulated. The balloon, edge, and gradient forces are combined with the binary image to construct the external force of the deformable model, which can rapidly drive the DSM to approach the target liver boundaries. Moreover, tangential and normal forces are combined with the gradient image to control the internal force, such that the DSM degree of smoothness can be precisely controlled. The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver. The proposed method is evaluated on the basis of different criteria applied to 10 clinical data sets. Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms. Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.  相似文献   

14.
Kinetic occlusion produces discontinuities in the optic flow field, whose perception requires the detection of an unexpected onset or offset of otherwise predictably moving or stationary contrast patches. Many cells in primate visual cortex are directionally selective for moving contrasts, and recent reports suggest that this selectivity arises through the inhibition of contrast signals moving in the cells’ null direction, as in the rabbit retina. This nulling inhibition circuit (Barlow-Levick) is here extended to also detect motion onsets and offsets. The selectivity of extended circuit units, measured as a peak evidence accumulation response to motion onset/offset compared to the peak response to constant motion, is analyzed as a function of stimulus speed. Model onset cells are quiet during constant motion, but model offset cells activate during constant motion at slow speeds. Consequently, model offset cell speed tuning is biased towards higher speeds than onset cell tuning, similarly to the speed tuning of cells in the middle temporal area when exposed to speed ramps. Given a population of neurons with different preferred speeds, this asymmetry addresses a behavioral paradox—why human subjects in a simple reaction time task respond more slowly to motion offsets than onsets for low speeds, even though monkey neuron firing rates react more quickly to the offset of a preferred stimulus than to its onset.  相似文献   

15.
In many species, including humans, exposure to high image velocities induces motion adaptation, but the neural mechanisms are unclear. We have isolated two mechanisms that act on directionally selective motion-sensitive neurons in the fly's visual system. Both are driven strongly by movement and weakly, if at all, by flicker. The first mechanism, a subtractive process, is directional and is only activated by stimuli that excite the neuron. The second, a reduction in contrast gain, is strongly recruited by motion in any direction, even if the adapting stimulus does not excite the cell. These mechanisms are well designed to operate effectively within the context of motion coding. They can prevent saturation at susceptible nonlinear stages in processing, cope with rapid changes in direction, and preserve fine structure within receptive fields.  相似文献   

16.
Adaptation was used to probe the perceiver's activation state when either motion or nonmotion percepts are formed for bistable, single-element apparent motion stimuli. Although adaptation was not observed in every instance, when it was observed its effect was to increase the probability of both motion-to-nonmotion and nonmotion-to-motion switches, the time scale of adaptation corresponding to neurophysiological observations for directionally selective cortical cells (Giaschi et al. 1993). This susceptibility to de-stabilizing adaptation effects indicated that the nonmotion percept was not the result of inadequate stimulation producing subthreshold levels of motion detector activation; if that were the case, activation-dependent adaptation would have decreased the nonmotion-to-motion switching rate by reducing activation further below threshold. Above-threshold activation levels are therefore associated with both nonmotion and motion perceptual states, and the failure to perceive motion despite the presence of adequate motion detector stimulation can be attributed to inhibitory competition between detectors activated by motion-specifying stimulus information and detectors activated to similar levels by motion-independent stimulus information, consistent with the dynamical quality of single-element apparent motion.  相似文献   

17.
R Eagleson 《Spatial Vision》1992,6(3):183-198
A class of linear operators is presented for estimating the local components of 2D translation, dilatation, rotation, and the shear/deformations which span the six degrees of freedom of motion of arbitrarily textured surfaces. This results in a model of visual motion analysis which proposes that the local transformations in the image are analysed by decomposing them into the six one-parameter subgroups of the 2D affine group. Each of the required invariant integral operators are easily specified by the characters of these six subgroups. The 2D affine group, however, does not have a simple structure. It is a Lie group which possesses a semi-direct product manifold, and classical harmonic analysis cannot proceed unless some mechanism is prescribed to isolate the 2D 'general linear' transformations from the 2D translations. It must also do so using measures which receive only local support from the image, since the global affine group model is only valid tangentially. A form of 'active perception' is thereby implicated; it is proposed that spatial indexing and 2D tracking is needed in order to form reliable estimates of 3D motion parameters using local operators in a data-driven fashion.  相似文献   

18.
Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.  相似文献   

19.
Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.  相似文献   

20.
Intracellular transport is a complex interplay of ballistic transport along filaments and of diffusive motion, reliably delivering material and allowing for cell differentiation, migration, and proliferation. The diffusive regime, including subdiffusive, Brownian, and superdiffusive motion, is of particular interest for inferring information about the dynamics of the cytoskeleton morphology during intracellular transport. The influence of dynamic cytoskeletal states on intracellular transport are investigated in Dictyostelium discoideum cells by single particle tracking of fluorescent nanoparticles, to relate quantitative motion parameters and intracellular processes before and after cytoskeletal disruption. A local mean-square displacement (MSD) analysis separates ballistic motion phases, which we exclude here, from diffusive nanoparticle motion. In this study, we focus on intracellular subdiffusion and elucidate lag-time dependence, with particular focus on the impact of cytoskeleton compartments like microtubules and actin filaments. This method proves useful for binary motion state distributions. Experimental results are compared to simulations of a data-driven Langevin model with finite velocity correlations that captures essential statistical features of the local MSD algorithm. Specifically, the values of the mean MSD exponent and effective diffusion coefficients can be traced back to negative correlations of the motion's increments. We clearly identify both microtubules and actin filaments as the cause for intracellular subdiffusion and show that actin-microtubule cross talk exerts viscosifying effects at timescales larger than 0.2 s. Our findings might give insights into material transport and information exchange in living cells, which might facilitate gaining control over cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号