首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product.  相似文献   

2.
3.
The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.  相似文献   

4.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Gα protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Gα are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (β2–β3, α2–β4, α3–β5, and α4–β6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gβγ. However, the constitutive activity caused by the F344C and E335C mutations in the α2–β4 loop and F378C in the α3–β5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gβγ. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the β2–β3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Gα contribute to activation of signaling.  相似文献   

5.
Summary To define the extent of intervening sequences required for efficient splicing of the CYH2 gene in Saccharomyces cerevisiae, we have constructed a series of intron mutations. Artificial intron extensions of more than 300 bp of the natural intron lead to an inhibition of splicing where-as intron deletions lead to a drastic improvement of the splicing efficiency. It is shown that deletion of a 32 bp sequence element within the intron is responsible for this drastic improvement.  相似文献   

6.
Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERα) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20β-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRα), the intermediary in DHP induction of OM. Conversely DHP treatment caused a > 50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRα, respectively, at different stages of oocyte development.  相似文献   

7.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

8.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

9.
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.  相似文献   

10.
Summary Phleomycin, a water-soluble antibiotic of the bleomycin family is as effective against Saccharomyces cerevisiae cells as against Escherichia coli cells. The ble gene of transposon Tn5, which confers resistance to phleomycin, was inserted in place of the iso-1-cytochrome C (CYC1) gene on an autonomously replicative multicopy E. coli-yeast shuttle plasmid. Higher resistance levels are obtained in S. cerevisiae when the region immediately upstream from the initiation codon conforms to the nucleotide sequence stringencies observed in almost every yeast gene. The expected regulation pattern of the whole CYC1 promoter confers different phleomycin resistance levels to the cell under varying physiological conditions. Partial deletions in the CYC1 promoter lead to changes in the resistance level of cells which are mostly accounted for by the removal of known positive and negative regulatory elements. Some of the vector constructions allow direct selection of phleomycin-resistant transformants on rich media.  相似文献   

11.
12.
Zhu M  Fan XL  Yang WL  Jiang Y  Ma L 《生理学报》2004,56(5):559-565
G蛋白耦联受体激酶5(GRK5)在G蛋白耦联受体信号转导中起重要调节作用。本文研究了单次给予成瘾性药物吗啡、海洛因和可卡因对大鼠脑内GRK5mRNA水平的调控作用,并选取吗啡为代表,观察单次或多次给予吗啡后大鼠脑内GRK5蛋白含量的变化。结果发现:(1)单次给予吗啡(10mg/kg)、海洛因(1mg/kg)或可卡因(15mg/kg)均可引起大鼠大脑顶叶皮层、颞叶皮层和海马的GRK5 mRNA水平显著上升;(2)单次或多次给予吗啡注射可以显著上调大鼠大脑皮层GRK5蛋白含量,而多次给予吗啡显著下调丘脑GRK5含量。我们的结果首次证明成瘾性药物对大脑皮层、海马等脑区的GRK5在mRNA水平和蛋白水平都有调控作用,提示GRK5可能在精神活性物质的成瘾中起作用。  相似文献   

13.
A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT_(2C) receptor and determine the characteristics of binding modes of 5-HT_(2C) receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5- HT_(2C) receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT_(2C) receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134, Ser138, Ash210, Asn331, Tyr358, Ile131, Ser132, Val135, Thr139, Ile189, Val202, Val208, Leu209, Phe214, Val215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT_(2C) receptor agonists have good agreement with the site-directed mutagenesis data and other studies.  相似文献   

14.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

15.
We identified and cloned the mouse orthologue of human GPR6 as a new member of the lysophospholipid-receptor family. Sphingosine-1-phosphate (S1P) activated GPR6, transiently expressed in frog oocytes or in Chinese hamster ovary (CHO) cells, with high specificity and nanomolar affinity. The GPR6 gene was found to be located on chromosome 10B1 and a single exon coded for the entire open-reading frame. Signal transduction of S1P was inhibited by pertussis toxin, suggesting a coupling of GPR6 to an inhibitory G protein. In CHO cells transfected with GPR6, the sphingosine-kinase pathway mediated Ca(2+) mobilization from internal stores. Apoptotic cell death was induced by serum deprivation or H(2)O(2) treatment and was prevented by S1P in GPR6-, but not in vector-transfected CHO cells. The antiapoptotic effect of S1P required activation of sphingosine kinase and was accompanied by an increase in MAP-kinase phosphorylation.  相似文献   

16.
17.
We previously demonstrated that chronic treatment of rats with the mu-opioid receptor agonist sufentanil induced pharmacological tolerance associated with mu-opioid receptor desensitization and down-regulation. Administration of the calcium channel blocker nimodipine during chronic treatment with sufentanil prevented mu-opioid receptor down-regulation, induced down-stream supersensitization, and produced supersensitivity to the opioid effects. The focus of the present study was to determine a role for G protein-coupled receptor kinases (GRKs) and beta-arrestin 2 in agonist-induced mu-opioid receptor signalling modulation during chronic opioid tolerance and supersensitivity. Tolerance was induced by 7-day chronic infusion of sufentanil (2 microgram/h). Supersensitivity was induced by concurrent infusion of sufentanil (2 microgram/h) and nimodipine (1 microgram/h) for 7 days. Antinociception was evaluated by the tail-flick test. GRK2, GRK3, GRK6 and beta-arrestin 2 immunoreactivity levels were determined by western blot in brain cortices. Acute and chronic treatment with sufentanil induced analgesic tolerance, associated with up-regulation of GRK2, GRK6, and beta-arrestin 2. GRK3 expression only was increased in the acutely treated group. When nimodipine was associated to the chronic opioid treatment, tolerance expression was prevented, and immunoreactivity levels of GRK2, GRK6 and beta-arrestin 2 recovered the control values. These data indicate that GRK2, GRK3, GRK6 and beta-arrestin 2 are involved in the short- and long-term adaptive changes in mu-opioid receptor activity, contributing to tolerance development in living animals. These observations also suggest that GRKs and beta-arrestin 2 could constitute pharmacological targets to prevent opioid tolerance development, and to improve the analgesic efficacy of opioid drugs.  相似文献   

18.
The Ste2 gene encodes the yeast alpha-pheromone receptor that belongs to the superfamily of seven-transmembrane G protein-coupled receptors. Binding of pheromone induces activation of the heterotrimeric G protein triggering growth arrest in G1 phase and induction of genes required for mating. By random PCR-mediated mutagenesis we isolated mutant 8L4, which presents a substitution of an asparagine residue by serine at position 388 of the alpha-factor receptor. The 8L4 mutant strain shows phenotypic defects such as: reduction in growth arrest after pheromone treatment, diminished activation of the Fus1 gene, and impaired mating competence. The asparagine residue lies in the second half of the intracellular protruding C-terminal tail of the receptor, and its replacement by serine affects interaction with both the G(alpha) and Gbeta subunits. Since expression of the receptor as well as its kinetic parameters, i.e., ligand affinity and receptor number, are unaffected in the mutant strain, we propose that association of the C-terminal tail of the receptor with G(alpha) and Gbeta subunits is required for proper activation of the heterotrimeric G protein. Besides its described role in downregulation and in formation of preactivation complex, the results here shown indicate that the C-terminal tail of the receptor plays an active role in transmitting the stimulus of mating pheromone to the heterotrimeric G protein.  相似文献   

19.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

20.
In Saccharomyces cerevisiae, mechanisms modulating the mating steps following cell cycle arrest are not well characterized. However, the N‐terminal domain of Ste2p, a G protein‐coupled pheromone receptor, was recently proposed to mediate events at this level. Toward deciphering receptor mechanisms associated with this mating functionality, scanning mutagenesis of targeted regions of the N‐terminal domain has been completed. Characterization of ste2 yeast overexpressing Ste2p variants indicated that residues Ile 24 and Ile 29 as well as Pro 15 are critical in mediating mating efficiency. This activity was shown to be independent of Ste2p mediated G1 arrest signaling. Further analysis of Ile 24 and Ile 29 highlight the residues' solvent accessibility, as well as the importance of the hydrophobic nature of the sites, and in the case of Ile 24 the specific size and shape of the side chain. Mutation of these Ile's led to arrest of mating after cell contact, but before completion of cell wall degradation. We speculate that these extracellular residues mediate novel receptor interactions with ligand or proteins, leading to stimulation of alternate signaling effector pathways. J. Cell. Biochem. 107: 630–638, 2009. © 2009 Crown in the right of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号