首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
P-cadherin belongs to the family of Ca2+-dependent homophilic glycosylated cell adhesion molecules. In the normal oral epithelium it shows a strong expression in the basal cell layer which gradually decreases in the suprabasal cell layers. The exact role of P-cadherin during the development and homeostasis of the oral epithelium has not been elucidated, yet. Here, we show for the first time that P-cadherin controls differentiation by regulating cytokeratin (CK) 1/10 expression in primary oral keratinocytes (POK) from normal, but interestingly not in POKs from oral squamous cell carcinoma (OSCC) tissue. SiRNA knockdown of P-cadherin in normal POKs revealed a strong upregulation of CK1/10 expression on mRNA and protein level. In contrast, E-cadherin knockdown in normal oral keratinocytes did not show any influence on CK1/10 expression. Moreover, in comparison with normal control keratinocytes normal oral keratinocytes with reduced P-cadherin expression displayed an enhanced expression and a stronger nuclear staining of C/EBP-beta, a well-known regulator of CK1/10 expression in keratinocytes. Furthermore, after P-cadherin knockdown in normal POKs the promoter activity of a C/EBP-responsive luciferase construct was significantly higher than in normal POKs with regular P-cadherin expression. Additionally, we noticed a proliferation advantage in normal oral keratinocytes in contrast to keratinocytes with diminished P-cadherin expression. However, the inverted effect was seen in tumor derived primary oral keratinocytes. In summary, we show that P-cadherin contributes to the keratinocyte differentiation in the oral epithelium by influencing the CK1 and CK10 expression via C/EBP-beta-mediated signaling in normal but not in tumor derived oral keratinocytes from OSCC patients.  相似文献   

2.
3.
Prostaglandin E2 concentrations in naturally occurring canine cancer   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the PGE2 concentration in naturally-occurring cancer in pet dogs and in canine cancer cell lines in order to identify specific types of canine cancer with high PGE2 production which could serve as preclinical models to evaluate anticancer strategies targeting PGE2. PGE2 concentrations were measured by enzyme immunoassay in canine melanoma, soft tissue sarcoma, transitional cell carcinoma, osteosarcoma, and prostatic carcinoma cell lines; in 80 canine tumor tissue samples including oral melanoma (MEL), oral squamous cell carcinoma (SCC), transitional cell carcinoma of the urinary bladder (TCC), lymphoma (LSA), mammary carcinoma (MCA), osteosarcoma (OSA), prostatic carcinoma (PCA); and in corresponding normal organ tissues. High concentrations of PGE(2)(range 400-3300 pg/10(4)cells) were present in cell culture medium from the transitional cell carcinoma, prostatic carcinoma, and osteosarcoma cell lines. PGE2 concentrations in tumor tissues were elevated (tumor PGE2 concentration>mean+2X sd PGE(2)concentration of normal organ tissue) in 21/22 TCC, 5/6 PCA, 7/10 SCC, 5/10 MEL, 3/8 MCA, 4/15 OSA, and 0/9 LSA. Results of this study will help guide future investigations of anticancer therapies that target cyclooxygenase and PGE2.  相似文献   

4.
MicroRNA (miRNA) is a form of small noncoding RNA that regulates the expression of genes either by inhibiting mRNA translation or by inducing its degradation. Small microRNA play important roles in regulating a large number of cellular processes, including development, proliferation and apoptosis. This study examined the biological functions of miR-205 as a tumor suppressor in KB oral cancer cells. The results showed that miR-205 expression was significantly lower in KB oral cancer cells than in human normal oral keratinocytes. Furthermore, the miR-205 over-expressed in KB oral cancer cells increased the cell cytotoxicity and induced apoptosis through the activation of caspase-3/-7. The transfection of miR-205 into KB oral cancer cells strongly induced IL-24, a well known cytokine that acts as a tumor suppressor in a range of tumor tissues. In addition, miR-205 targeted the IL-24 promoter directly to induce gene expression. Overall, miR-205 has significant therapeutic potential to turn on silenced tumor suppressor genes by targeting them with miRNA.  相似文献   

5.
Hypothermia is known to retard mammalian cell growth, however, BC-8 cells, which have originated from AK-5 tumor after single cell cloning, were triggered into apoptotic pathway when grown at 30 degrees C. Cell death process showed typical apoptotic features like DNA fragmentation, cytochrome c release, etc. Introduction of Bcl-2 gene in BC-8 cells inhibited hypothermia-induced apoptotic process, which is ascribed to reduced ROS generation and higher glutathione production. Thus, Bcl-2 seems to control the apoptotic induction process at the level of redox regulation, in addition to its known effects at the mitochondrial dysregulation. These observations suggest that tumors, which are low in Bcl-2 expression, are sensitive to hypothermic shock and make hypothermia an interesting inducer of apoptosis in tumor cells.  相似文献   

6.
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.  相似文献   

7.
8.
To define the responses of apoptotic regulatory proteins to different chemotherapeutic agents, we investigated the expression of Bcl-2 family gene products, the release of cytochrome c, and the activation of pro-caspase-3 during apoptosis induced by Taxol and Thiotepa, in the MCF-7 breast carcinoma and the HL-60 leukemia cell lines. The earliest event induced by drug exposure was increase in Bad protein levels, followed by Bcl-2 down-regulation, cytochrome c release, and Bcl-xL and Bax up-regulation. Bak accumulation was a late event. Activation of pro-caspase-3 and cleavage of Bcl-2 protein occurred in the HL-60 cells only, and followed the cytochrome c release. The overall responses were qualitatively similar in both cell types, but MCF-7 cells treated with Taxol showed a significant delay in apoptosis, correlating with early up-regulation of Bcl-2 and delayed release of cytochrome c. We conclude that Bad up-regulation is an early indicator of a cellular response that will lead to cell death, but may be modulated by survival mechanisms, which cumulatively govern the ultimate susceptibility to apoptosis.  相似文献   

9.
Bcl-2 has been shown to exert its antiapoptotic activity predominantly at the level of mitochondria by preventing cytochrome c release. Whether Bcl-2 is involved in the regulation of mitochondrial function prior to an apoptotic stimulus remains elusive. Using functional and spectrophotometric measurements in an inducible PC12-Tet-on-bcl-2 cell line we demonstrate that induction of Bcl-2 overexpression rapidly reduced cytochrome b and c levels as well as complex I activity. To confirm that these changes were specific for Bcl-2 we generated a bcl-2 antisense construct under the control of the tetracycline responsive promotor. Transient transfection with this antisense plasmid prevented both the decrease of cytochrome b and c levels and the loss of complex I activity. The decrease of cytochrome b levels was paralleled by a decrease of cytochrome b mRNA levels while Northern blot analysis of cytochrome c mRNA expression did not reveal any overt changes in Bcl-2 cells. We propose that the antiapoptotic properties of Bcl-2 are related to the reduction of mitochondrial complex I activity and lowered mitochondrial cytochrome b and c levels.  相似文献   

10.
MicroRNA (miRNA) is a small noncoding RNA molecule, 19–25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33 % in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50 % by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3′UTR (64–92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.  相似文献   

11.
Bcl-2 protein plays important roles in the regulation of apoptosis. However, the exact mechanism by which Bcl-2 blocks apoptosis is still unclear. In the present study, we found that overexpression of Bcl-2 in human small cell lung carcinoma Ms-1 cells inhibited not only the release of cytochrome c from mitochondria into cytosol but also de novo ceramide synthesis induced by inostamycin, a phosphatidylinositol turnover inhibitor. To investigate the correlation between the structure of Bcl-2 and its inhibitory function in inostamycin-induced apoptosis, Ms-1 cells that stably overexpress domain-deletional mutants of Bcl-2 were established. Transmembrane domain-deleted Bcl-2 failed to inhibit inostamycin-induced de novo ceramide synthesis, whereas it inhibited inostamycin-induced cytochrome c release, indicating that anchoring of Bcl-2 to membrane was a requirement for its inhibitory effect on inostamycin-induced ceramide synthesis, but not cytochrome c release. Thus, the deletion mutant of tarnsmembrane domain of Bcl-2 can suppress inostamycin-induced apoptosis by inhibiting cytochrome c release, a downstream event of ceramide synthesis in the pathway of inostamycin-induced apoptosis. We also found that the BH3 and BH4 domains of Bcl-2 were necessary for inhibition of inostamycin-induced apoptosis, and deletion of BH1 or BH2 did not affect the inhibitory effect of Bcl-2 to inostamycin-induced apoptotic events.  相似文献   

12.
The molecular and structural characteristics of intercellular adhesion were investigated in a squamous cell carcinoma (SCCA) cell line, originally derived from an oral tumor with an invasive growth pattern. The expression of adherens junction and desmosomal components were compared with that of cultured normal oral keratinocytes. Lack of membrane association in interdesmosomal areas, the disorganization of the actin cytoskeleton and the faster cell disassembly upon E-cadherin antibody binding in SCCA cells indicated decreased functional adherens junctions. These observations were supported by a significant reduction in E-, N-, and P-cadherin protein expression. In contrast, the level of desmosomal cadherin proteins, desmoglein 1/2 and desmocollin 2, were substantially upregulated and accompanied, ultrastructurally, by increased number and size of desmosomes. Since tumor invasion suppressor capacity has been proposed for desmosomal cadherins, we investigated the in vivo invasion potential of these SCCA cells by introducing them into SCID mice. Tumors developed, but with a benign phenotype. Based on these results, we hypothesize that the benign behavior of this SCCA cell line is a consequence of overexpressed desmosomal cadherins. This SCCA cell line, therefore, represents an excellent model system to further investigate the regulation and tumor invasion suppressor potential of desmosomal adhesion molecules.  相似文献   

13.
TRAIL (Apo2L), a cytokine from the family of tumor necrosis factors (TNF), causes apoptosis in various types of tumor cells but is not toxic for normal cells. Recombinant TRAIL obtained using an original method stimulates the release of cytochrome c from mitochondria into the cytoplasm and apoptosis in HeLa carcinoma cells. Expression of oncoprotein Bcl-2 in these cells blocks both processes. The microtubule inhibitors taxol, nocodazole, and colcemid, as well as an inhibitor of actin microfilaments cytochalasin D, enhance the action of TRAIL and allow it to overcome protection caused by overexpression of Bcl-2. This effect is not associated with enhancement of early steps of TRAIL-dependent apoptosis leading to activation of caspase-8 and Bid protein. The inactivation of Bcl-2 also does not define the effect of cytoskeleton inhibitors. It is supposed that destruction of cytoskeleton alters the mechanism of the TRAIL- (or TNF)-dependent cytochrome c release from mitochondria by making it resistant to Bcl-2. The combined use of cytoskeleton inhibitors, which are antitumor drugs, with the recombinant TRAIL preparations may be efficient in therapy of tumors resistant to traditional chemotherapy.  相似文献   

14.
The present study examined the expression and biological functions of bromodomain-containing protein 4 (BRD4) in skin squamous cell carcinoma (SCC) cells. Our results show that BRD4 mRNA and protein expression was upregulated in human skin SCC cells, as compared to its level in the normal skin keratinocytes and fibroblasts. Treatment with BRD4 inhibitors, JQ1 and CPI203, resulted in proliferation inhibition, apoptosis and cell cycle arrest in both established (A431 cell line) and primary skin SCC cells. Furthermore, BRD4 knockdown (by targeted shRNAs) or knockout (by CRISPR/Cas9) largely inhibited A431 cell proliferation. Reversely, forced-overexpression of BRD4 in A431 cells facilitated cell proliferation. We show that BRD4 is required for the expression of several oncogenes, including cyclin D1, Bcl-2 and MYC. BRD4 inhibition, knockdown or knockout significantly decreased above oncogene expression in SCC cells. In vivo, CRISPR/Cas9-mediated BRD4 knockout significantly suppressed A431 xenograft tumor growth in severe combined immunodeficient (SCID) mice. Together, our results suggest that BRD4 could be a novel and pivotal oncogenic protein of skin SCC.  相似文献   

15.
There are about 200-600 million betel quid (BQ) chewers in the world. BQ chewing is one of the major risk factor of hepatocarcinoma, oropharyngeal, and esophagus cancers in Taiwan, India, and Southeast Asian countries. Thus, the precise molecular mechanisms deserve investigation. We used cultured primary keratinocytes and KB cells, RT-PCR, flow cytometry, Western blotting, and ELISA to evaluate whether alterations in early gene expression is crucial in the carcinogenic processes of BQ. We observed the induction of c-Fos mRNA expression in human gingival keratinocyte (GK) and KB carcinoma cells by areca nut (AN) extract and arecoline. A maximal increment in c-fos gene expression was shown at about 30 min after challenge. AN extract (100-800 microg/ml) and arecoline (0.1-0.8 mM) also stimulated ERK1/ERK2 phosphorylation with a maximal stimulation at 5-10 min of exposure. Pretreatment by U0126 (30 microM), a MEK inhibitor, markedly inhibited the c-Fos, cyclooxygenase-2 (COX-2), and IL-6 mRNA expression of the KB epithelial cells. In addition, U0126 and PD98059 (50 microM) also decreased AN extract- and arecoline-associated PGE2 and IL-6 production in GK and KB cells. However, U0126 by itself arrested the cells in G0/G1 phase, but was not able to prevent AN- and arecoline-induced cell death or apoptosis. In contrast, U0126 enhanced the AN-induced apoptosis of KB cells. AN ingredients thus play a significant role in the pathogenesis of oropharyngeal cancer by activation of MEK1/ERK/c-Fos pathway, which promotes keratinocyte inflammation, cell survival, and affects cell cycle progression.  相似文献   

16.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside-induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside-induced hair cell death can be prevented by broad-spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside-induced hair cell death requires activation of caspase-9. Caspase-9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside-induced hair cell death is mediated by the mitochondrial (or "intrinsic") cell death pathway. The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl-2 is an anti-apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl-2 to examine the role of Bcl-2 in neomycin-induced hair cell death. Overexpression of Bcl-2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl-2 overexpression prevented neomycin-induced activation of caspase-9 in hair cells. These results suggest that the expression level of Bcl-2 has important effects on the pathway(s) important for the regulation of aminoglycoside-induced hair cell death.  相似文献   

17.
18.
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.  相似文献   

19.
Previous studies have reported a protective role for the von Hippel-Lindau (VHL) gene products against pro-apoptotic cellular stresses, but the mechanisms remain unclear. In this study, we examined the role of VHL in renal cells subjected to chemical hypoxia, using four VHL-negative and two VHL-positive cell lines. VHL-negative renal carcinoma cells underwent apoptosis following chemical hypoxia (short-term glucose deprivation and antimycin treatment), as evidenced by morphologic changes and internucleosomal DNA cleavage. Reintroduction of VHL expression prevented this apoptosis. VHL-negative cells displayed a significant (greater than 5-fold) activation of caspase 9 and release of cytochrome c into the cytosol following chemical hypoxia. In contrast, VHL-positive cells showed minimal caspase 9 activation, and absence of cytochrome c release under the same conditions. Caspase 8 was only minimally activated in both VHL-negative and -positive cells. In addition, VHL-positive cells displayed a striking up-regulation of Bcl-2 expression (5-fold) following chemical hypoxia. Antisense oligonucleotides to Bcl-2 significantly down-regulated Bcl-2 protein expression in VHL-positive cells and rendered them sensitive to apoptosis. Overexpression of Bcl-2 in VHL-negative cells conferred resistance to apoptosis. Our results suggest that VHL protects renal cells from apoptosis via Bcl-2-dependent pathways.  相似文献   

20.
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM–Chk2–p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号