首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Host restriction factors play a crucial role in preventing trans-species transmission of viral pathogens. In mammals, the interferon-induced Mx GTPases are powerful antiviral proteins restricting orthomyxoviruses. Hence, the human MxA GTPase may function as an efficient barrier against zoonotic introduction of influenza A viruses into the human population. Successful viruses are likely to acquire adaptive mutations allowing them to evade MxA restriction. We compared the 2009 pandemic influenza A virus [strain A/Hamburg/4/09 (pH1N1)] with a highly pathogenic avian H5N1 isolate [strain A/Thailand/1(KAN-1)/04] for their relative sensitivities to human MxA and murine Mx1. The H5N1 virus was highly sensitive to both Mx GTPases, whereas the pandemic H1N1 virus was almost insensitive. Substitutions of the viral polymerase subunits or the nucleoprotein (NP) in a polymerase reconstitution assay demonstrated that NP was the main determinant of Mx sensitivity. The NP of H5N1 conferred Mx sensitivity to the pandemic H1N1 polymerase, whereas the NP of pandemic H1N1 rendered the H5N1 polymerase insensitive. Reassortant viruses which expressed the NP of H5N1 in a pH1N1 genetic background and vice versa were generated. Congenic Mx1-positive mice survived intranasal infection with these reassortants if the challenge virus contained the avian NP. In contrast, they succumbed to infection if the NP of pH1N1 origin was present. These findings clearly indicate that the origin of NP determines Mx sensitivity and that human influenza viruses acquired adaptive mutations to evade MxA restriction. This also explains our previous observations that human and avian influenza A viruses differ in their sensitivities to Mx.  相似文献   

2.
We investigated the importance of the host Mx1 gene in protection against highly pathogenic H5N1 avian influenza virus. Mice expressing the Mx1 gene survived infection with the lethal human H5N1 isolate A/Vietnam/1203/04 and with reassortants combining its genes with those of the non-lethal virus A/chicken/Vietnam/C58/04, while all Mx1–/– mice succumbed. Mx1-expressing mice showed lower organ virus titers, fewer lesions, and less pulmonary inflammation. Our data support the hypothesis that Mx1 expression protects mice against the high pathogenicity of H5N1 virus through inhibition of viral polymerase activity ultimately resulting in reduced viral growth and spread. Drugs that mimic this mechanism may be protective in humans.  相似文献   

3.
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains.Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza.The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection. These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses.  相似文献   

4.
Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition, and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. Primary mouse and human macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro. These results together indicate that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection.  相似文献   

5.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

6.
Ding H  Tsai C  Zhou F  Buchy P  Deubel V  Zhou P 《PloS one》2011,6(3):e17821

Background

The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined.

Methodology/Principal Findings

In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge.

Conclusions/Significance

Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection.  相似文献   

7.

Background

Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1.

Methods and Findings

We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection.

Conclusions

The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic.  相似文献   

8.
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.  相似文献   

9.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.  相似文献   

10.
Infection with seasonal influenza viruses induces a certain extent of protective immunity against potentially pandemic viruses of novel subtypes, also known as heterosubtypic immunity. Here we demonstrate that infection with a recent influenza A/H3N2 virus strain induces robust protection in ferrets against infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Prior H3N2 virus infection reduced H5N1 virus replication in the upper respiratory tract, as well as clinical signs, mortality, and histopathological changes associated with virus replication in the brain. This protective immunity correlated with the induction of T cells that cross-reacted with H5N1 viral antigen. We also demonstrated that prior vaccination against influenza A/H3N2 virus reduced the induction of heterosubtypic immunity otherwise induced by infection with the influenza A/H3N2 virus. The implications of these findings are discussed in the context of vaccination strategies and vaccine development aiming at the induction of immunity to pandemic influenza.  相似文献   

11.
Interferon-mediated host responses are of great importance for controlling influenza A virus infections. It is well established that the interferon-induced Mx proteins possess powerful antiviral activities toward most influenza viruses. Here we analyzed a range of influenza A virus strains for their sensitivities to murine Mx1 and human MxA proteins and found remarkable differences. Virus strains of avian origin were highly sensitive to Mx1, whereas strains of human origin showed much weaker responses. Artificial reassortments of the viral components in a minireplicon system identified the viral nucleoprotein as the main target structure of Mx1. Interestingly, the recently reconstructed 1918 H1N1 "Spanish flu" virus was much less sensitive than the highly pathogenic avian H5N1 strain A/Vietnam/1203/04 when tested in a minireplicon system. Importantly, the human 1918 virus-based minireplicon system was almost insensitive to inhibition by human MxA, whereas the avian influenza A virus H5N1-derived system was well controlled by MxA. These findings suggest that Mx proteins provide a formidable hurdle that hinders influenza A viruses of avian origin from crossing the species barrier to humans. They further imply that the observed insensitivity of the 1918 virus-based replicon to the antiviral activity of human MxA is a hitherto unrecognized characteristic of the "Spanish flu" virus that may contribute to the high virulence of this unusual pandemic strain.  相似文献   

12.

Background

The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV). Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase™) is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1). Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1) viruses.

Methods and Findings

The activity of DAS181 against several pandemic influenza A(H1N1) virus isolates was examined in MDCK cells, differentiated primary human respiratory tract culture, ex-vivo human bronchi tissue and mice. DAS181 efficiently inhibited viral replication in each of these models and against all tested pandemic influenza A(H1N1) strains. DAS181 treatment also protected mice from pandemic influenza A(H1N1)-induced pathogenesis. Furthermore, DAS181 antiviral activity against pandemic influenza A(H1N1) strains was comparable to that observed against seasonal influenza virus including the H274Y oseltamivir-resistant influenza virus.

Conclusions

The sialidase fusion protein DAS181 exhibits potent inhibitory activity against pandemic influenza A(H1N1) viruses. As inhibition was also observed with oseltamivir-resistant IFV (H274Y), DAS181 may be active against the antigenically novel pandemic influenza A(H1N1) virus should it acquire the H274Y mutation. Based on these and previous results demonstrating DAS181 broad-spectrum anti-IFV activity, DAS181 represents a potential therapeutic agent for prevention and treatment of infections by both emerging and seasonal strains of IFV.  相似文献   

13.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

14.

Background

The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.

Methodology/Principal Findings

We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.

Conclusions/Significance

Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.  相似文献   

15.
The persistence of highly pathogenic avian influenza within wild bird populations has forged interest in control measures to limit a possible human pandemic. We therefore investigated the efficacy of low dose oral administration of IFN-alpha as a potential therapy against influenza infection in a murine model. We have identified an optimal low oral dose of IFN-alpha that when delivered daily as prophylactic therapy protects C57BL/6J mice from a lethal challenge with mouse adapted human influenza virus A/PR/8/34 (H1N1). These results provide strong support for the application of low dose type 1 IFN pretreatment to human influenza control.  相似文献   

16.
Whether chicken Mx inhibits influenza virus replication is an important question with regard to strategies aimed at enhancing influenza resistance in domestic flocks. The Asn631 polymorphism of the chicken Mx protein found in the Shamo (SHK) chicken line was previously reported to be crucial for the antiviral activity of this highly polymorphic chicken gene. Our aims were to determine whether cells from commercial chicken lines containing Asn631 alleles were resistant to influenza virus infection and to investigate the effects that other polymorphisms might have on Mx function. Unexpectedly, we found that the Asn631 genotype had no impact on multicycle replication of influenza virus (A/WSN/33 [H1N1]) in primary chicken embryo fibroblast lines. Furthermore, expression of the Shamo (SHK) chicken Mx protein in transfected 293T cells did not inhibit viral gene expression (A/PR/8/34 [H1N1], A/Duck/England/62 [H4N6], and A/Duck/Singapore/97 [H5N3]). Lastly, in minireplicon systems (A/PR/8/34 and A/Turkey/England/50-92/91 [H5N1]), which were highly sensitive to inhibition by the murine Mx1 and human MxA proteins, respectively, Shamo chicken Mx also proved ineffective in the context of avian as well as mammalian cell backgrounds. Our findings demonstrate that Asn631 chicken Mx alleles do not inhibit influenza virus replication of the five strains tested here and efforts to increase the frequency of Asn631 alleles in commercial chicken populations are not warranted. Nevertheless, chicken Mx variants with anti-influenza activity might still exist. The flow cytometry and minireplicon assays described herein could be used as efficient functional screens to identify such active chicken Mx alleles.  相似文献   

17.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

18.
During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.  相似文献   

19.
Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号