首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-12 and TNF-alpha are central proinflammatory cytokines produced by macrophages and dendritic cells. Disregulation of TNF-alpha is associated with sepsis and autoimmune diseases such as rheumatoid arthritis. However, new evidence suggests an anti-inflammatory role for TNF-alpha. TNF-alpha-treated murine macrophages produced less IL-12p70 and IL-23, after stimulation with IFN-gamma and LPS. Frequency of IL-12p40-producing macrophages correspondingly decreased as measured by intracellular cytokine staining. IL-12p40 production was also inhibited in dendritic cells. TNFR1 was established as the main receptor involved in IL-12p40 regulation, because IL-12p40 levels were not affected by TNF-alpha in TNFR1(-/-)-derived macrophages. Macrophages activated during Listeria monocytogenes infection were more susceptible to inhibition by TNF-alpha than cells from naive animals, which suggests a regulatory role for TNF-alpha in later stages of infection. This nonapoptotic anti-inflammatory regulation of IL-12 and IL-23 is an important addition to the multitude of TNF-alpha-induced responses determined by cell-specific receptor signaling.  相似文献   

2.
Stimulation of murine macrophages with LPS results in the coordinated activation of a set of proinflammatory cytokines and costimulatory molecules, including TNF-alpha, IL-6, IL-1, IL-8, IL-12, and CD80. Macrophage LPS-induced synthesis of IL-12 is inhibited following FcgammaR ligation; TNF-alpha secretion is unchanged. We report that microtubule-associated serine/threonine kinase-205 kDa (MAST205) is required for LPS-induced IL-12 synthesis. RNA interference-mediated suppression of MAST205 results in the inhibition of LPS-stimulated IL-12 promoter activity and IL-12 secretion, from both J774 cells and bone marrow-derived macrophages. Similarly, dominant-negative MAST205 mutants inhibit LPS-stimulated IL-12 synthesis and NF-kappaB activation, but do not affect IL-1 or TNF-alpha signaling. Finally, macrophage FcgammaR ligation regulates MAST205 by inducing the rapid ubiquitination and proteasomal degradation of the protein.  相似文献   

3.
Although the etiology of Behcet's disease (BD) still remains uncertain, various immune abnormalities have been implicated in BD. We studied cytokine production in patients with active and inactive BD, and evaluated the effect of treatment with infliximab (anti-TNF-alpha antibody) on disease activity and cytokine production by the ELISPOT assay. The numbers of cells spontaneously secreting IFN-gamma, IL-12, and TNF-alpha were significantly increased in patients with active BD. Mitogen-stimulated IL-4 secretion was elevated in active patients, though the ratio of IFN-gamma:IL-4 secreting cells was significantly increased in active BD. Next, we monitored cytokine production and expression of IL-12 receptor beta1 chain (IL-12Rbeta1) during short- and long-term infliximab treatment. A single infusion of infliximab significantly reduced the number of PBMC secreting TNF-alpha within 24 h. A rise in TNF-alpha production was associated with clinical deterioration. Infliximab treatment induced a significant increase in the number of cells secreting IFN-gamma and expressing IL-12Rbeta1. A favorable clinical response to infliximab was associated with a persistent reduction in TNF-alpha secretion, but did not correlate with IFN-gamma production. Our findings indicate that TNF-alpha plays a pivotal role in BD, and that anti-TNF-alpha therapy both reduces TNF-alpha production and modulates the functional activity of type 1 cells.  相似文献   

4.
Ozenci V  Kouwenhoven M  Press R  Link H  Huang YM 《Cytokine》2000,12(8):1218-1224
The cytokine IL-12 promotes Th(1)type immune responses and plays a key role in immune regulation. The complex nature of IL-12 hampered its detection without use of stimulants that might give less relevant information. To detect circulating IL-12 p40, we developed enzyme-linked immunospot (ELISPOT) assays that allow enumeration of IL-12 p40 secreting cells without prior in vitro stimulation of the cells. In parallel, intracellular staining of IL-12 p40 by flow cytometry was performed to compare the two methods. IL-12 p40 secreting cells were detected in healthy subjects at a mean number of 103+/-155 per 10(5)blood mononuclear cells (MNC). Numbers of IL-12 p40 secreting blood MNC correlated with IL-12 p40 positive blood MNC detected by flow cytometry. Bacterial endotoxins and the inflammatory cytokines TNF-alpha and IFN-gamma control IL-12 production by antigen presenting cells. Utilizing IL-12 p40 ELISPOT assays, we could confirm occurrence of elevated numbers of IL-12 p40 secreting blood MNC after stimulation with TNF-alpha, IFN-gamma, LPS, LPS+TNF-alpha or LPS+IFN-gamma, compared to cultures without stimulant. Due to its central role in inflammation and autoimmunity, IL-12 is an attractive target for immunotherapy. IL-12 p40 ELISPOT assays represent a sensitive, specific and reliable tool for investigating the role of IL-12 in both health and disease.  相似文献   

5.
6.
Kesherwani V  Sodhi A 《Cytokine》2007,37(1):62-70
In the present study the quantitative role of p42/44 and p38 in the production of TNF-alpha, IL-1beta and IL-12 by murine peritoneal macrophages, in vitro, on treatment with Concanavalin A (ConA) has been investigated. Maximum expression/production of cytokines TNF-alpha, IL-1beta and IL-12 was observed after 16 h by RT-PCR and 24 h by ELISA, on in vitro treatment with ConA. To investigate the role of MAP kinases in the production of cytokines, pharmacological inhibitors of MAP kinases--PD98059, SB202190 and SP600125, were used. The expression of TNF-alpha, IL-1beta and IL-12 was down regulated in the presence of PD98059 and SB202190 in a dose dependent manner, suggesting the involvement of p42/44 and p38 in ConA induced production of TNF-alpha, IL-1beta and IL-12 by macrophages. It was observed that SP600125 did not have any effect on the expression of TNF-alpha, IL-1beta and IL-12. Using different combinations of MAPK inhibitors, it was found that 45% signal is conveyed via p42/44 and 25% via p38 in the production of these cytokines, by ConA treated macrophages while 30% signal passes through unidentified pathways.  相似文献   

7.
The aim of this study was to evaluate the roles of IL-18 and IL-12 in potentiating the encephalitogenic activity of T cell lines specific for myelin oligodendrocyte glycoprotein (MOG(35-55)). MOG-specific T cells stimulated with anti-CD3 and anti-CD28 in the presence of IL-12 or IL-18 alone transferred only mild experimental autoimmune encephalomyelitis (EAE) into a low percentage of recipients. However, T cells cocultured with both cytokines transferred aggressive clinical and histological EAE into all recipients. Coculture of T cells with IL-12 enhanced the secretion of IFN-gamma, but not TNF-alpha, whereas coculture with IL-18 enhanced the secretion of TNF-alpha, but not INF-gamma. However, coculture with both IL-18 and IL-12 induced high levels of both TNF-alpha and IFN-gamma. Additionally, IL-12 selectively enhanced mRNA expression of CCR5, whereas IL-18 selectively enhanced the expression of CCR4 and CCR7, and CCR4 and CCR5 were coexpressed on the surface of T cells cocultured with IL-12 and IL-18. Finally, estrogen treatment, previously found to inhibit both TNF-alpha and IFN-gamma production, completely abrogated all signs of passive EAE. These data demonstrate that optimal potentiation of encephalitogenic activity can be achieved by conditioning MOG-specific T cells with the combination of IL-12 and IL-18, which, respectively, induce the secretion of IFN-gamma/CCR5 and TNF-alpha/CCR4/CCR7, and that estrogen treatment, which is known to inhibit both proinflammatory cytokines, can completely ablate this aggressive form of passive EAE.  相似文献   

8.
9.
Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-gamma production, leading to normal LM clearance in the host. IFN-gamma knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-gamma KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-gamma following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-gamma-deficient, Kupffer cells could not produce TNF-alpha in response to LM in vitro, indicating the importance of MyD88-dependent TNF-alpha production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-gamma, and TNF-alpha, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-gamma production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-alpha production and for IL-12- and IL-18-mediated IFN-gamma production in early phase clearance of LM.  相似文献   

10.
11.
It has been reported that IFN-gamma, TNF-alpha, and IL-12 stimulate, and that IL-10, TGF-beta, and IL-4 suppress the protective immune response against tuberculosis. We aim to evaluate changes in the serum levels of pro and antiinflammatory cytokines in active pulmonary tuberculosis (APTB) and the possible effects of treatment on these changes. Serum IL-12p40, IL-4, IL-10, TNF-alpha, IFN-gamma, and TGF-beta1 levels were determined in 20 APTB cases (group 1) before and 2, 4, and 6 months after therapy. The same parameters were also determined in 9 inactive pulmonary tuberculosis (IPTB) cases (group 2) and 9 healthy controls (HC, group 3). Before treatment, the mean serum IFN-gamma, TNF-alpha, and IL-10 levels in group 1 were statistically higher than those in group 2 (P=.001, P=.024, P=.016, resp) or group 3 (P=.003, P=.002, P=.011, resp). The levels in group 1 decreased significantly after treatment (P=.001 for IFN-gamma, P=.004 for TNF-alpha, P=.000 for IL-10). The serum levels of IL-12p40 were significantly higher in group 1 than in group 3 (P=.012) and decreased insignificantly after treatment. There was no difference in serum IL-4 and TGF-beta1 levels among the groups (P>.05). Because the serum IL-12p40, IL-10, TNF-alpha, and IFN-gamma levels were high in APTB, we believe that these cytokines have important roles in the immune response to Mycobacterium tuberculosis (M tuberculosis). These parameters could be used in follow-up as indicators of the success of APTB therapy.  相似文献   

12.
Cell-mediated immunity, leading to Mycobacterium tuberculosis (Mtb)-constraining granuloma formation, is the major component of host defense against tuberculosis and is regulated by the balance of cytokines secreted mostly by mononuclear phagocytes and lymphocytes. To better understand the role of monocytes in the regulation of the immune response against pulmonary tuberculosis, we examined IL-10, IL-12 and TNF-alpha release by monocytes from healthy purified protein derivative (PPD) reactors and pulmonary tuberculosis patients with or without systemic reactions (e.g., fever, weight loss, asthenia). Our study shows that, probably as a result of in vivo priming by circulating antigens, monocytes from patients, especially those with systemic manifestations, have a biased ex vivo cytokine secretion, with high IL-10 and TNF-alpha but low IL-12, in contrast with PPD reactors. Higher spontaneous IL-10 and TNF-alpha release persisted when monocytes were co-cultured with autologous lymphocytes. Challenge of patients' monocytes with a virulent Mtb strain led to a further enhancement of IL-10 and TNF-alpha, but not of IL-12. When lymphocytes were added to these cultures, IL-10 and TNF-alpha elevation persisted and, in the patients with a systemic reaction, both IL-12 and IFN-gamma were significantly reduced compared to PPD reactors. Intragroup comparisons revealed that in the patients with systemic reactions, the lymphocyte-monocyte interaction resulted in a positive feedback for IL-10 secretion, while in the patients without systemic reaction and PPD reactors, the feedback was positive for IL-12 secretion. Thus, in tuberculosis, there appears to exist a relationship between the immunological findings and the distinct clinical manifestations.  相似文献   

13.
We have recently demonstrated that two IFN-gamma-inducing cytokines, interleukin (IL)-12 and IL-18, synergistically induced the fungicidal activity of mouse peritoneal exudate cells (PEC) against Cryptococcus neoformans through NK cell production of interferon (IFN)-gamma and nitric oxide (NO) synthesis. In the present study, we further dissected these effects by examining the involvement of tumor necrosis factor (TNF)-alpha in the induction of IL-12/IL-18-stimulated PEC fungicidal activity. The addition of neutralizing anti-TNF-alpha mAb significantly suppressed IL-12/IL-18-stimulated PEC anticryptococcal activity. This effect was ascribed to the inhibition of macrophage NO synthesis, but not of IFN-gamma production by NK cells, because the same treatment inhibited the former response, but not the latter one. On the other hand, combined treatment with IL-12 and IL-18 synergistically induced the production of TNF-alpha by PEC and this effect was almost completely abrogated by neutralizing anti-IFN-gamma mAb. The cell type producing TNF-alpha among PEC was mostly macrophage. TNF-alpha significantly promoted macrophage NO production and anticryptococcal activity induced by IFN-gamma, and furthermore anti-TNF-alpha mAb partially inhibited these responses. Considered together, our results indicated that TNF-alpha contributed to the potentiation of IL-12/IL-18-induced PEC fungicidal activity against C. neoformans through enhancement of IFN-gamma-induced production of NO by macrophages, but not through increased production of IFN-gamma by NK cells.  相似文献   

14.
We describe here the isolation of Reishi polysaccharides for the study of their effect on cytokine expression in mouse splenocytes. A fraction (F3) has been shown to activate the expression of IL-1, IL-6, IL-12, IFN-gamma, TNF-alpha, GM-CSF, G-CSF, and M-CSF, and from this three subfractions have been prepared where F3G1 activates IL-1, IL-12, TNF-alpha, and G-CSF, F3G2 activates all the cytokines as F3 does, and F3G3 activates only IL-1 and TNF-alpha. Together with previous studies, the mode of action on macrophages has been proposed where F3 binds to TLR4 receptor and activates extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 to induce IL-1 expression.  相似文献   

15.
Since some cytokines effectively enhance the cytotoxicity of monoclonal antibodies, we investigated whether a combination of cytokines can augment the antibody-dependent cellular cytotoxicity (ADCC) of monoclonal antibodies 17-1A and BR55-2 against the colorectal carcinoma cell line HT29. Since monocytes/macrophages are important effector cells for ADCC, we used a new flow cytometric cytotoxicity assay, which allows the analysis of long-term-ADCC exerted by these cells. In our previous studies with peripheral blood mononuclear cells from normal donors, we found that IL-2, IL-12 and IFN-alpha increase ADCC. Therefore, we examined whether combination of these three cytokines with IL-2, IL-4, IL-6, IL-10, IL-12, IFN-alpha, IFN-gamma, GM-CSF, M-CSF and TNF-alpha may yield higher ADCC than obtained by the application of single cytokines. Indeed, we found that the combinations IL-2/IFN-alpha, IL-2/IL-12 and IL-12/IFN-alpha potentiated ADCC. Interestingly, the ineffective single cytokines TNF-alpha and GM-CSF in the combinations IL-2/TNF-alpha, IFN-alpha/TNF-alpha and IFN-alpha/GM-CSF also proved to enhance ADCC. In contrast, IL-4 significantly suppressed the IL-2, IL-12 and IFN-alpha-induced ADCC. In addition, the immunosuppressive cytokine IL-10 in higher concentrations significantly suppressed the IL-12-induced-ADCC. Our results may be useful to find combinations of cytokines and mAb for the treatment of cancer.  相似文献   

16.
IL-4 is involved in type 2 T helper cell (Th)2-type immune responses and, in some cases, can promote Th1 responses. However, the proinflammatory potential of IL-4 alone is unclear. In this study, we examined the ability of IL-4 to induce colitis after its overexpression in the colon using an adenoviral vector (Ad5) and compared results with those obtained after overexpression of IL-12, a cytokine implicated in several models of colitis. Overexpression of IL-4 or IL-12 caused a fatal colitis within 24 h in 60% of animals and was dose and strain dependent. IL-12-induced colitis was accompanied by the local expression of IFN-gamma and TNF-alpha but not IL-4 mRNA and protein. Conversely, IL-4-induced colitis was accompanied by the local expression of IL-4 and TNF-alpha but not IFN-gamma mRNA and protein. The Ad5-IL4-induced colitis did not persist beyond 3 days and was present in recombinase activation gene-2 (RAG-2)-/- mice but not in STAT6-/- mice. Acute lethal colitis induced by Ad5IL12 was T cell mediated and IFN-gamma receptor (IFN-gamma R) dependent. Furthermore, TNF-alpha was found to be important in the pathogenesis of Ad5IL-4 and Ad5IL-12-induced colitis. Results of this study indicate that IL-4 alone can act as a proinflammatory cytokine in the gut of normal mice, inducing a rapid onset and short-lived colonic injury while maintaining a Th2-type cytokine profile that functions via a local T cell-independent mechanism involving TNF-alpha.  相似文献   

17.
18.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

19.
Glucose-induced insulin secretion from islets cultured in the presence of interleukin-6 (IL-6) for 12-24 h was inhibited to a similar extent as when islets were treated with interleukin-1 beta (IL-1 beta). However, unlike IL-1 beta, IL-6 did not potentiate insulin secretion during an acute (30 min) exposure of islets to the cytokine, nor did it inhibit DNA synthesis during a 24 h culture period. A 12 h pretreatment of islets with tumour necrosis factor-alpha (TNF-alpha) combined with IL-1 beta potentiated the inhibitory effect of IL-1 beta on secretion, such that 20 mM-glucose-induced insulin secretion was abolished. No synergistic inhibition of secretion was observed with TNF-alpha and IL-6. However, IL-1 beta and IL-6 were found to inhibit insulin secretion in an additive manner. These results suggest that IL-6 inhibits insulin secretion in a manner distinct from that of IL-1 beta, and that IL-6 is unlikely to mediate the inhibitory effects of IL-1 beta or TNF-alpha on rat islets of Langerhans.  相似文献   

20.
Dendritic cells (DC) are crucial in generating immunity to infection. Here we characterize changes in DC in terms of number, activation and effector functions, focusing on conventional DC (cDC) and plasmacytoid DC (pDC), in Listeria-infected mice. Kinetic studies showed a subset- and tissue-specific expansion of cDC and upregulation of CD80 and CD86 on splenic and mesenteric lymph node (MLN) cDC after intragastric infection. Expansion of pDC was more prolonged than cDC, and pDC upregulated CD86 and MHC-II, but not CD80, in both the spleen and MLN. cDC were an important source of IL-12 but not TNF-alpha during infection, while pDC made neither of these cytokines. Instead other CD11c(int) cells produced these cytokines. Using five-colour flow cytometry and double intracellular cytokine staining, we detected phenotypically similar CD11c(int)CD11b(+)Gr1(+) cells with distinct capacities to produce TNF-alpha/IL-12 or TNF-alpha/iNOS (inducible nitric oxide synthase) in Listeria-infected tissues. IL-12p70 was also produced by sorted CD11c(hi) and CD11c(int)CD11b(+)Gr1(+) cells. Furthermore, production of TNF-alpha, iNOS and IL-12 was differentially dependent on cellular localization of the bacteria. Cytosol-restricted bacteria induced TNF-alpha and iNOS-producing cells, albeit at lower frequency than wild-type bacteria. In contrast, IL-12 was induced only with wild-type bacteria. These data provide new insight into the relative abundance and function of distinct CD11c-expressing populations during the early stage of Listeria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号