首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蓝藻抗病毒蛋白-N(Cyanovirin-N,CV-N)具有广谱抗病毒活性,其同源物构成CVNH(Cyanovirin-N homology)蛋白家族,并且家族成员的抗人类免疫缺陷病毒结构域在进化上非常保守。文章通过重建基因树对CVNH结构域的"零散分布"特点作了更为细致的了解,发现在黑曲霉、费氏曲菌、产黄青霉、粗糙脉孢霉、蓝杆藻和水蕨等物种中存在多份该结构域拷贝。在此基础上,分别采用机理式模型(Mechanistic model)和MEC模型(Mechanistic-empirical combination model)对CVNH结构域序列位点进行适应性进化分析,结果显示:1)两类模型均未检测到统计上显著的正选择位点;2)净化选择对CVNH起主导作用;3)MEC模型更适合所研究的数据。进一步使用"支-特异"模型和"支-位点"模型对蓝杆菌菌株7822和7424的祖先分支进行检测,发现该分支经历过适应性进化,并且鉴定出6个正选择位点(34L、63L、13H、76C、78K和80I)。  相似文献   

2.
齐小琼  高磊  王艇 《遗传》2010,32(1):87-94
蓝藻抗病毒蛋白-N(Cyanovirin-N,CV-N)具有广谱抗病毒活性;其同源物构成 CVNH 蛋白家族,并且家族成员的抗人类免疫缺陷病毒结构域在进化上非常保守。本研究通过重建基因树对 CVNH 结构域的“零散分布”特点作了更为细致的了解,发现在黑曲霉、费氏曲菌、产黄青霉、粗糙脉孢霉、蓝杆藻和水蕨等物种中该结构域存在多份拷贝。在此基础上,分别采用机理式模型和 MEC 模型对 CVNH 结构域序列位点进行适应性进化分析,结果显示:(1)两类模型均未检测到统计上显著的正选择位点;(2)净化选择对 CVNH 起主导作用;(3)MEC 模型更适合所研究数据。进一步使用“支-特异”模型和“支-位点”模型对蓝杆菌菌株7822和7424的祖先分支进行检测,发现该分支经历过适应性进化,并且鉴定出6 个正选择位点(34L、63L、13H、76C、78K 和 80I)。这些结果对后续的 CVNH 功能验证和借助基因工程手段改良蛋白的抗病毒活性具重要意义。  相似文献   

3.
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. Rossmann‐like fold is the most populated fold among α/β‐folds in the Protein Data Bank and proteins containing Rossmann‐like fold constitute 22% of all known proteins 3D structures. Thus, analysis of viral proteins containing Rossmann‐like domains could provide an understanding of viral biology and evolution as well as could propose possible targets for antiviral therapy. We provide functional and evolutionary analysis of viral proteins containing a Rossmann‐like fold found in the evolutionary classification of protein domains (ECOD) database developed in our lab. We identified 81 protein families of bacterial, archeal, and eukaryotic viruses in light of their evolution‐based ECOD classification and Pfam taxonomy. We defined their functional significance using enzymatic EC number assignments as well as domain‐level family annotations.  相似文献   

4.
The expression of genes transcribed by the RNA polymerase with the alternative sigma factor <r54 (Ecr54) is absolutely dependent on activator proteins that bind to enhancer-like sites, located far upstream from the promoter. These unique prokaryotic proteins, known as enhancer-binding proteins (EBP), mediate open promoter complex formation in a reaction dependent on NTP hydrolysis. The best characterized proteins of this family of regulators are NtrC and Nif A, which activate genes required for ammonia assimilation and nitrogen fixation, respectively. In a recent IRBM course (“Frontiers of protein structure prediction,” IRBM, Pomezia, Italy, 1995; see web site http://www.mrc-cpe.cam.uk/ irbm-course95/), one of us (J.O.) participated in the elaboration of the proposal that the Central domain of the EBPs might adopt the classical mononucleotide-binding fold. This suggestion was based on the results of a new protein fold recognition algorithm (Map) and in the mapping of correlated mutations calculated for the sequence family on the same mononucleotide-binding fold topology. In this work, we present new data that support the previous conclusion. The results from a number of different secondary structure prediction programs suggest that the Central domain could adopt an alfi topology. The fold recognition programs ProFIT 0.9, 3D PROFILE combined with secondary structure prediction, and 123D suggest a mononucleotide-binding fold topology for the Central domain amino acid sequence. Finally, and most importantly, three of five reported residue alterations that impair the Central domain ATPase activity of the Eo-54 activators are mapped to polypeptide regions that might be playing equivalent roles as those involved in nucleotide-binding in the mononucleotide-binding proteins. Furthermore, the known residue substitutions that alter the function of the Ecr54 activators, leaving intact the Central domain ATPase activity, are mapped on a region proposed to play an equivalent role as the effector region of the GTPase superfamily.  相似文献   

5.
Proteins of the nucleic acid‐binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB‐fold in protein structures. Here, we have analyzed the superfamily of nucleic acid‐binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA‐binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA‐binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain‐containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB‐fold is a distinctive feature of S1 domain‐containing proteins. Proteins from the other families and superfamilies have either one OB‐fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain‐containing proteins. Proteins 2017; 85:602–613. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
We identified a cadherin-like domain (CHDL) using computational analysis. The CHDL domain is mostly distributed in Proteobacteria and Cyanobacteria, although it is also found in some eukaryotic proteins. Prediction of three-dimensional protein folding indicated that the CHDL domain has an immunoglobulin beta-sandwich fold and belongs to the cadherin superfamily. The CHDL domain does not have LDRE and DxNDN motifs, which are conserved in the cadherin domain, but has three other motifs: PxAxxD, DxDxD and YT-V/I-S/T-D, which might contribute to forming a calcium-binding site. The identification of this cadherin-like domain indicates that the cadherin superfamily may exhibit wider sequence and structural diversity than previously appreciated. Domain architecture analysis revealed that the CHDL domain is also associated with other adhesion domains as well as enzyme domains. Based on computational analysis and previous experimental data, we predict that the CHDL domain has calcium-binding and also carbohydrate-binding activity.  相似文献   

9.
The rice blast fungus Magnaporthe oryzae's genome encodes a hypothetical protein (MGG_03307) containing a type III CVNH lectin, in which a LysM domain is inserted between individual repeats of a single CVNH domain. At present, no structural or ligand binding data are available for any type III CVNH and functional studies in natural source organisms are scarce. Here, we report NMR solution structure and functional data on MGG_03307. The structure of the CVNH/LysM module revealed that intact and functionally competent CVNH and LysM domains are present. Using NMR titrations, carbohydrate specificities for both domains were determined, and it was found that each domain behaves as an isolated unit without any interdomain communication. Furthermore, live-cell imaging revealed a predominant localization of MGG_03307 within the appressorium, the specialized fungal cell for gaining entry into rice tissue. Our results suggest that MGG_03307 plays a role in the early stages of plant infection.  相似文献   

10.
Matei E  Louis JM  Jee J  Gronenborn AM 《Proteins》2011,79(5):1538-1549
Members of the cyanovirin-N homolog (CVNH) lectin family are found in bacteria, fungi and plants. As part of our ongoing work on CVNH structure-function studies, we determined the high-resolution NMR solution structure of the homolog from the wheat head blight disease causing ascomycetous fungus Gibberella zeae (or Fusarium graminearum), hereafter called GzCVNH. Like cyanovirin-N (CV-N), GzCVNH comprises two tandem sequence repeats and the protein sequence exhibits 30% identity with CV-N. The overall structure is similar to those of other members of the CVNH family, with the conserved pseudo-symmetric halves of the structure, domains A and B, closely resembling recently determined structures of Tuber borchii, Neurospora crassa, and Ceratopteris richardii CVNH proteins. Although GzCVNH exhibits a similar glycan recognition profile to CV-N and specifically binds to Manα(1-2)Manα, its weak carbohydrate binding affinity to only one binding site is insufficient for conferring anti-HIV activity.  相似文献   

11.
SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes.  相似文献   

12.
Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion.  相似文献   

13.
Cyanovirin-N (CVN) is a promising antiviral candidate that has an extremely low sequence homology with any other known proteins. The efficient and soluble expression of biologically functional recombinant CVN (rCVN) is still an obstacle due to insufficient yield, aggregation, and abnormal modification. Here, we describe an improved approach to preparing native rCVN from Escherichia coli more efficiently. A fusion gene consisting of cvn and sumo (small ubiquitin-related modifier) and a hexahistidine tag was constructed according to the codon bias of the host cell. This small ubiquitin-related modifier (SUMO)-fused CVN is expressed in the cytoplasm of E. coli in a folded and soluble form (>30% of the total soluble protein), yielding 3 to 4 mg of native rCVN from 1 g of wet cells to a purity up to 97.6%. Matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry and reverse-phase high-performance liquid chromatographic analysis showed that the purified rCVN was an intact and homogeneous protein with a molecular weight of 11,016.68 Da. Potent antiviral activity of rCVN against herpes simplex virus type 1 and human immunodeficiency virus type 1/IIIB was confirmed in a dose-dependent manner at nanomolar concentrations. Thus, the His-SUMO double-fused CVN provides an efficient approach for the soluble expression of rCVN in the cytoplasm of E. coli, allowing an alternative system to develop bioprocess for the large-scale production of this antiviral candidate.  相似文献   

14.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.  相似文献   

15.
The interferon-induced transmembrane (IFITM) family of proteins have recently been identified as important host effector molecules of the type I interferon response against viruses. IFITM1 has been identified as a potent antiviral effector against hepatitis C virus (HCV), whereas the related family members IFITM2 and IFITM3 have been described to have antiviral effects against a broad range of RNA viruses. Here, we demonstrate that IFITM2 and IFITM3 play an integral role in the interferon response against HCV and act at the level of late entry stages of HCV infection. We have established that in hepatocytes, IFITM2 and IFITM3 localize to the late and early endosomes, respectively, as well as the lysosome. Furthermore, we have demonstrated that S-palmitoylation of all three IFITM proteins is essential for anti-HCV activity, whereas the conserved tyrosine residue in the N-terminal domain of IFITM2 and IFITM3 plays a significant role in protein localization. However, this tyrosine was found to be dispensable for anti-HCV activity, with mutation of the tyrosine resulting in an IFITM1-like phenotype with the retention of anti-HCV activity and co-localization of IFITM2 and IFITM3 with CD81. In conclusion, we propose that the IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation and demonstrate that the actions of the IFITM proteins are indeed virus and cell-type specific.  相似文献   

16.
17.
18.
The first application of a novel technique for the identification of common folding motifs in proteins is presented. Using techniques derived from graph theory, developed in order to compare secondary structure motifs in proteins, we have established that there is a striking resemblance in the tertiary fold of the Salmonella typhimurium Che Y chemotaxis protein and that of the GDP-binding domain of Escherichia coli elongation factor Tu (EF Tu). These two protein structures are representatives of two major macromolecular classes: CheY is a signal-transduction protein with sequence homologies to a wide range of bacterial proteins involved in regulation of chemotaxis, membrane synthesis and sporulation; whilst EF Tu is one of a family of guanosine-nucleotide-binding proteins which include the ras oncogene proteins and signal-transducing G proteins. The similarity we have found extends far beyond the previously recognized resemblances of each protein's fold to that of a generic nucleotide-binding domain. The lack of significant sequence homology between the two classes of proteins may mean that the common fold of the two proteins constitutes a particularly stable folding motif. However, an alternative possibility is that the strong three-dimensional structural resemblance may be indicative of a remote shared common ancestry between the bacterial signal-transduction proteins and the GDP-binding proteins.  相似文献   

19.
BACKGROUND: The betagamma-crystallins belong to a superfamily of two-domain proteins found in vertebrate eye lenses, with distant relatives occurring in microorganisms. It has been considered that an eukaryotic stress protein, spherulin 3a, from the slime mold Physarum polycephalum shares a common one-domain ancestor with crystallins, similar to the one-domain 3-D structure determined by NMR. RESULTS: The X-ray structure of spherulin 3a shows it to be a tight homodimer, which is consistent with ultracentrifugation studies. The (two-motif) domain fold contains a pair of calcium binding sites very similar to those found in a two-domain prokaryotic betagamma-crystallin fold family member, Protein S. Domain pairing in the spherulin 3a dimer is two-fold symmetric, but quite different in character from the pseudo-two-fold pairing of domains in betagamma-crystallins. There is no evidence that the spherulin 3a single domain can fold independently of its partner domain, a feature that may be related to the absence of a tyrosine corner. CONCLUSION: Although it is accepted that the vertebrate two-domain betagamma-crystallins evolved from a common one-domain ancestor, the mycetezoan single-domain spherulin 3a, with its unique mode of domain pairing, is likely to be an evolutionary offshoot, perhaps from as far back as the one-motif ancestral stage. The spherulin 3a protomer stability appears to be dependent on domain pairing. Spherulin-like domain sequences that are found within bacterial proteins associated with virulence are likely to bind calcium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号