首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

2.
Study of molecular-epidemiological characteristics of Vibrio cholerae non O1/non O139 serogroup with complete and limited set of virulence genes was performed. Differences of their genes composition as compared to these of O1 serogroup (classic and El Tor biovars) were revealed, which points to their origin from avirulent environmental cholera vibrios.  相似文献   

3.
The cell surfaces of several toxigenic and nontoxigenic environmental and clinical isolates of Vibrio cholerae non-O1 have been examined. The environmental strains, irrespective of toxigenicity, are significantly more resistant to antibiotics and detergents than are V. cholerae O1 strains. The clinical isolates of non-O1 vibrios are as sensitive to a wide variety of chemicals as the O1 vibrios. The environmental non-O1 strains are also less susceptible to lysis when treated with protein denaturants or neutral and anionic detergents than are O1 vibrios and the clinical non-O1 strains. In contrast to O1 vibrios, the environmental non-O1 vibrios do not have exposed phospholipids in their outer membranes. These features of the cell surfaces of environmental non-O1 vibrios might have a role in the better survival of these organisms under environmental fluctuations.  相似文献   

4.
K Chaudhuri  R K Bhadra    J Das 《Applied microbiology》1992,58(11):3567-3573
The cell surfaces of several toxigenic and nontoxigenic environmental and clinical isolates of Vibrio cholerae non-O1 have been examined. The environmental strains, irrespective of toxigenicity, are significantly more resistant to antibiotics and detergents than are V. cholerae O1 strains. The clinical isolates of non-O1 vibrios are as sensitive to a wide variety of chemicals as the O1 vibrios. The environmental non-O1 strains are also less susceptible to lysis when treated with protein denaturants or neutral and anionic detergents than are O1 vibrios and the clinical non-O1 strains. In contrast to O1 vibrios, the environmental non-O1 vibrios do not have exposed phospholipids in their outer membranes. These features of the cell surfaces of environmental non-O1 vibrios might have a role in the better survival of these organisms under environmental fluctuations.  相似文献   

5.
The influence of the preparation of hemocytolysin, obtained from V. cholerae non O1 (strain P-11702), on the growth of V. cholerae cells was studied. The study revealed that hemocytolysin is capable of inducing partial or complete bacterial lysis on the place of its application, depending on the protein load of the substance and the inoculation dose of microbes. Two electrophoretic fractions with molecular weights of 14 and 14.5 kD induced the cytolysis of sheep, rabbit, guinea-pig red blood cells and showed a bactericidal effect. The different sensitivity of Vct+ and Vct- strains of V. cholerae to different doses of hemocytolysin was studied.  相似文献   

6.
Hemagglutination and intestinal adherence properties of non-O1 Vibrio cholerae were studied in vitro. No definite correlation between the cell-associated hemagglutinin titers and the intestinal adhesion indices was noted. Sugar- and glycoprotein-mediated inhibition data also indicated differences between the hemagglutination and adherence processes in respect to the receptor structures. Intestinal adherence of most V. cholerae strains could be inhibited to various extents by N-acetyl D-glucosamine. This observation provides a likely explanation for the ecological behavior of these organisms, which are known to associate themselves with chitinous (chitin:homopolymer of N-acetyl D-glucosamine) surfaces of zooplankton. The absence of any significant difference between the intestinal adherence indices of clinical and environmental isolates suggests that intestinal adhesion may be an essential but not sufficient prerequisite for colonization by and subsequent expression of pathogenicity of these microorganisms.  相似文献   

7.
Hemagglutination and intestinal adherence properties of non-O1 Vibrio cholerae were studied in vitro. No definite correlation between the cell-associated hemagglutinin titers and the intestinal adhesion indices was noted. Sugar- and glycoprotein-mediated inhibition data also indicated differences between the hemagglutination and adherence processes in respect to the receptor structures. Intestinal adherence of most V. cholerae strains could be inhibited to various extents by N-acetyl D-glucosamine. This observation provides a likely explanation for the ecological behavior of these organisms, which are known to associate themselves with chitinous (chitin:homopolymer of N-acetyl D-glucosamine) surfaces of zooplankton. The absence of any significant difference between the intestinal adherence indices of clinical and environmental isolates suggests that intestinal adhesion may be an essential but not sufficient prerequisite for colonization by and subsequent expression of pathogenicity of these microorganisms.  相似文献   

8.
The results of the serotyping of 244 V. cholerae non O1/O139 cultures isolated from patients in Uzbekistan in 2000 and 2001 are presented. All isolates were studied by the method of molecular probing and in the polymerase chain reaction for the presence of virulence genes and for sensitivity to phages ctx+, ctx- and hemolytic activity. The use of monoreceptor O-sera O2-O83 made it possible to determine vibrios of 32 serogroups with the dominating role in the etiology of acute enteric diseases belonging to serogroups O18, O62, O82, O37. Genes ctx AB were detected in none of the isolates, 5 of them contained gene tcp A. A group of cultures, sensitive to phage ctx+ and belonging mainly to enteropathogenic serogroups, was detected.  相似文献   

9.
In this study, we demonstrated that analyzed strains of Vibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.  相似文献   

10.
The in vitro antibacterial activity of sitafloxacin using clinical isolates of Vibrio cholerae O1 was compared to other fluoroquinolones: ciprofloxacin, ofloxacin, sparfloxacin and levofloxacin. Against fluoroquinolone-resistant O1 strains, sitafloxacin was 4- to 16-fold more effective than other fluoroquinolones at MIC(90*). Against fluoroquinolone-susceptible O1 strains, the MIC(90) of sitafloxacin was 2- to 4-fold lower than other fluoroquinolones. This suggests sitafloxacin can be used in the treatment of infections caused by V. cholerae O1 strains including the fluoroquinolone-resistant strains.  相似文献   

11.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

12.
13.
The nucleotide sequence and mechanism of action were examined on the antiseptic-resistance gene qacE delta 1 that had been isolated from Pseudomonas aeruginosa, Vibrio parahaemolyticus and Vibrio cholerae non-O1. The nucleotide sequences of qacE delta 1 genes isolated from environmental isolates of V. cholerae non-O1 and V. parahaemolyticus differed by one base from that of the gene from P. aeruginosa. Escherichia coli C600 that harbored qacE delta 1 genes from several strains of Vibrio spp. exhibited low-level resistance to intercalating dyes. The resistance of E. coli cells with these genes to intercalating dyes, such as ethidium bromide, was mediated by an efflux system. Moreover, the activity of QacE delta 1 was inhibited in the presence of calcium channel blockers but not of calmodulin inhibitors. These results indicate that the qacE delta 1 gene can be function in E. coli and that the gene mediates resistance in a similar manner to the antiseptic-resistance gene smr.  相似文献   

14.
Isolates of Vibrio cholerae were obtained from clinical and environmental samples and the pathogenicity of these isolates was confirmed by hemolytic assay. The clinical isolates were more pathogenic than environmental isolates. Antibiotic susceptibility of V. cholerae to a set of antibiotics showed a marked variation. The environmental isolates exhibited more resistance to the antibiotics than clinical isolates. The plasmid curing technique was used to check the encoding of antibiotic resistance gene in genome. In both isolates, the resistance to vancomycin and co-trimaxazole was not mediated by plasmid and it may probably be encoded in genome. RAPD method was adopted to find out the variation in the genome of the clinical isolates and environmental isolates of V. cholerae. The genomic similarity pattern revealed that the environmental Ogawa isolates were closely related to clinical Ogawa isolates. This study confirmed the existence of the complex nature of V. cholerae in its pathogenicity, response to a set of antibiotics and genetic similarity.  相似文献   

15.
Vibrio cholerae, the causative agent of Asiatic cholera, is a gram-negative motile bacterial species acquired via oral ingestion of contaminated food or water sources. The O1 serogroup of V. cholerae is responsible for pandemic cholera and is divided into two biotypes, classical and El Tor (Butterton and Calderwood, 1995; Mekalanos, 1985). The El Tor biotype is responsible for the current cholera pandemic. In the absence of disease, the vibrio life cycle consists of a free-swimming phase in marine and estuarine environments in association with zooplankton, crustaceans, insects, and water plants. Vibrios interact with various surfaces found in the environment to generate biofilms which may promote survival (Watnick etaL, 1999). Within the host the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the intestinal villi, adhere to and colonize the epithelial surface of the small intestine, assume a non-motile phase, replicate and cause disease by secreting numerous exoproteins at the site of infection (Oliver and Kaper, 1997). The voluminous diarrhea associated with cholera infection leads to the dissemination of the vibrios back into a watery environment and thus a continuation of the environmental phase of the life cycle. The host phase of the vibrio life cycle is only possible through the action of a group of virulence genes (ToxR-regulon) controlled by a complex and incompletely understood regulatory cascade. The ToxR regulon colonization and toxin genes are coordinately expressed in response to specific host signals that have yet to be completely defined (Skorupsky and Taylor 1997). Although little is known regarding the host signals that impact the ToxR regulatory cascade, it is clear that these intraintestinal signals play an important role in maximizing the ability of the vibrios to survive and multiply within the host. Key to understanding the complex events involved in the pathogenesis of V. cholerae will be elucidating the intraintestinal signaling molecules that trigger the expression of vibrio virulence genes. Understanding the molecular basis of this host-parasite interaction will provide important information with respect to how pathogenic bacteria establish infection and provide insights leading to novel methods for treating and/or preventing bacterial infections. This review will summarize what is known regarding host signaling and the complex ToxR regulatory system employed by V. cholerae to coordinate virulence gene expression within the host.  相似文献   

16.
17.
Cholera occurs in sporadic cases and outbreaks in Nepal each year. Vibrio cholerae O1 (n = 522) isolated during 2007-2010 from diarrheal patients at 10 different hospital laboratories in Nepal were characterized. Biochemical and serologic identifications showed that all the isolates belonged to serogroup O1, El Tor biotype. Except 72 isolates of Inaba serotype isolated in the year 2007, all the remaining isolates were of Ogawa serotype. All isolates were resistant to nalidixic acid and furazolidone. Resistance to tetracycline, ciprofloxacin, erythromycin and co-trimoxazole were 21, 4, 16 and 90 % respectively. Seventy-seven of these isolates were selected for further characterization for ctxB gene and MLVA typing. Two different variants of classical type cholera toxin were observed. Ogawa strains from 2007 and 2010-Western Nepal outbreak harbored CTX-3 type cholera toxin, whereas Inaba serotypes in 2007 and the remaining Ogawa serotypes in 2008-2010 harbored CTX 3b-type toxin. MLVA analysis showed circulation of four different groups of altered V. cholerae O1 El Tor strains. Two different profiles were seen among 2007 Inaba (9, 3, 6, x, x) and Ogawa (10, 7, 6, x, x) isolates. The MLVA profile of 2008 and 2009 Ogawa isolates were similar to those of Inaba strains of 2007. Isolates from 2010 also showed three different MLVA profiles; profile 9, 3, 6, x, x in 3 isolates, 11, 7, 6, x, x among 2010 Western Nepal outbreak strains and profile 8, 3, 6, x, x among isolates from Butwal and Kathmandu.  相似文献   

18.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

19.
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.  相似文献   

20.
A serogroup of non-O1 Vibrio cholerae, tentatively named Hakata, possessing the C (Inaba) factor but not the B (Ogawa) and A factors of V. cholerae O1 is described. Strains of this serogroup were isolated from river and estuarine waters and from frozen shrimps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号