首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic glutathione S-transferases were purified from human jejunal mucosa by affinity chromatography on S-hexylglutathione-Sepharose 4B. Chromatofocusing in the pH range 7-4 yielded peaks with apparent pI's of 7.2 (peak 1), 5.2 (peak 2), and 4.4 (peak 3). Each enzymatic fraction was shown to have a homodimeric structure, with subunit mass of 24.9 +/- 0.5 (P1), 27.9 +/- 0.9 (P2), and 23.4 +/- 0.8 (P3) kDa, as determined by SDS-PAGE. The substrate specificity of each peak was tested using discriminating substrates for basic, near-neutral, and acidic GSTs. With cumene hydroperoxide, the diagnostic substrate for the alpha (basic) class of GSTs, P1 showed 8- to 36-fold higher activity than P2 and P3. Ethacrynic acid, the selective substrate for the acidic enzyme (pi), gave highest activity with P3. The inhibitory potentials of sulfobromophthalein, cibacron blue, tributyltin acetate, triphenyltin chloride, and bromphenol blue were also tested. A qualitative resemblance between P1 and alpha, and P3 and pi GSTs was noted. The substrate specificity and inhibiton parameters of P2 corresponded most closely to those of mu-GST. The relative abundances of P1, P2, and P3 (based on CDNB-conjugating activity) were 35, 5, and 60%, respectively.  相似文献   

2.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

3.
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha.  相似文献   

4.
A single glutathione transferase isoenzyme was purified from hepatic cytosol of the brushtail possum and shown to represent 3.6 ± 0.3% of the total cytosolic protein. Characterisation of the enzyme, termed Possum GST 1–1, indicated that it possessed similar catalytic activity and structural homology with isoenzymes belonging to the alpha class of glutathione transferases. This homodimeric GST exhibited a single band with an apparent molecular mass of 25.4 kDa on sodium dodecyl sulphate-polyacrylamide gels and an apparent pI of 9.8. Inhibition studies demonstrated that Possum GST 1–1 displays binding affinity for a range of inhibitors similar to that shown by alpha class GSTs purified from other mammals. Immunoblot analysis demonstrated immuno-cross reactivity between Possum GST 1–1 and antisera raised against human alpha GST, while this GST did not cross-react with antisera raised against human mu and pi GST. N-terminal sequencing of purified Possum GST 1–1 revealed that the N-terminus of the protein is chemically blocked. Sequence analysis of three internal peptide sequences demonstrated homology with mammalian alpha GSTs. Of particular interest is the significant substrate specificity that Possum GST 1–1 displays with both organic and inorganic hydroperoxides. It is proposed that this substrate specificity is an evolutionary adaptation to a diet high in potentially toxic plant allelochemicals.  相似文献   

5.
A glutathione S-transferase (GST) from Lactuca sativa was purified to electrophoretic homogeneity approximately 403-fold with a 9.6% activity yield by DEAE-Sephacel and glutathione (GSH)-Sepharose column chromatography. The molecular weight of the enzyme was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the enzyme was significantly inhibited by ShexylGSH and S-(2,4-dinitrophenyl) glutathione. The enzyme displayed activity towards 1-chloro-2,4-dinitrobenzene, a general GST substrate and high activities towards ethacrynic acid. It also exhibited glutathione peroxidase activity toward cumene hydroperoxide.  相似文献   

6.
A glutathione peroxidase (GPX) protein was purified approximately 1000-fold from Southern bluefin tuna (Thunnus maccoyii) liver to a final specific activity of 256 micromol NADPH oxidised min(-1) mg(-1) protein. Gel filtration chromatography and denaturing protein gel electrophoresis of the purified preparation indicated that the protein has a native molecular mass of 85 kDa and is most likely a homotetramer with subunits of approximately 24 kDa. The Km values of the purified enzyme for hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and glutathione were 12, 90, 90 and 5900 microM, respectively. The Km values for cumene hydroperoxide and t-butyl hydroperoxide were approximately 8-fold greater than the Km value for hydrogen peroxide. Thus, the SBT liver GPX has a considerably greater affinity for hydrogen peroxide than for the other two substrates. The pH optimum of the purified enzyme was pH 8.0. Immunoblotting experiments with polyclonal antibodies, raised against a recombinant human GPX, provided further evidence that the purified SBT enzyme is a genuine GPX.  相似文献   

7.
Protection of glutathione S-transferase from bilirubin inhibition   总被引:1,自引:0,他引:1  
Inhibition of the enzyme activity of glutathione S-transferase (GST) by a physiological concentration of bilirubin was studied using various substrates. When rat liver cytosol was used as an unfractionated GST, its GSH-conjugation activity toward 1-chloro-2,4-dinitrobenzene was decreased to one-half by bilirubin, while the activity toward 1,2-dichloro-4-nitrobenzene, p-nitrobenzyl chloride, or 1,2-epoxy-(p-nitrophenoxy)propane and also the non-selenium dependent GSH-peroxidase activity toward cumene hydroperoxide (CHPx activity) were hardly affected under the same conditions. In contrast, bilirubin inhibited each of the purified GST isozymes and no remarkable difference in bilirubin inhibition was observed with any of the substrates tested. From the chromatographic analysis of the cytosol incubated with [3H]bilirubin, it was found that a major part of the added bilirubin binds to subunit 1 (Ya) of GST isozyme, leaving not only the conjugation activity derived from 3-4 type GST but also the CHPx activity of subunit 2 (Yc) quantitatively intact. The bilirubin inhibition of both the conjugation activity of GST 3-4 and the CHPx activity of GST 2-2 was prevented almost completely by addition of a 3-fold molar excess of GST 1-1. From these results, it was assumed that the enzyme activities of both 3-4 type GSTs and subunit 2 (Yc) were protected from the inhibitory action of bilirubin by the scavenger effect of subunit 1 (Ya).  相似文献   

8.
Redesign of glutathione transferases (GSTs) has led to enzymes with remarkably enhanced catalytic properties. Exchange of substrate-binding residues in GST A1-1 created a GST A4-4 mimic, called GIMFhelix, with >300-fold improved activity with nonenal and suppressed activity with other substrates. In the present investigation GIMFhelix was compared with the naturally-evolved GSTs A1-1 and A4-4 by determining catalytic efficiencies with nine alternative substrates. The enzymes can be represented by vectors in multidimensional substrate-activity space, and the vectors of GIMFhelix and GST A1-1, expressed in kcat/Km values for the alternative substrates, are essentially orthogonal. By contrast, the vectors of GIMFhelix and GST A4-4 have approximately similar lengths and directions. The broad substrate acceptance of GST A1-1 contrasts with the high selectivity of GST A4-4 and GIMFhelix for alkenal substrates. Multivariate analysis demonstrated that among the diverse substrates used, nonenal, cumene hydroperoxide, and androstenedione are major determinants in the portrayal of the three enzyme variants. These GST substrates represent diverse chemistries of naturally occurring substrates undergoing Michael addition, hydroperoxide reduction, and steroid double-bond isomerization, respectively. In terms of function, GIMFhelix is a novel enzyme compared to its progenitor GST A1-1 in spite of 94% amino-acid sequence identity between the enzymes. The redesign of GST A1-1 into GIMFhelix therefore serves as an illustration of divergent evolution leading to novel enzymes by minor structural modifications in the active site. Notwithstanding low sequence identity (60%), GIMFhelix is functionally an isoenzyme of GST A4-4.  相似文献   

9.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

10.
Cytosolic glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitro-benzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-(p-nitrophenoxyl)propane (EPNP), trans-4-phenyl-3-buten-2-one (t-PBO), δ3-androstene-3,17-dione (ASD) and trans-stilbene oxide (t-SO); cytosolic glutathione peroxidase activity toward cumene hydroperoxide (CuOOH); and microsomal GST activity toward CDNB were examined in liver, kidney, brain, and lung of adult male and female Japanese quail. In all cases, the renal specific activity per milligram protein was higher than the hepatic activity and was the highest among the four tissues examined. No consistent sex differences in GST activity were observed. The GSTs were purified from quail liver cytosol by S-hexylglutathione and glutathione affinity chromatography. Total GSTs eluted from the S-hexylglutathione affinity column were further separated by chromatofocusing, and the microheterogeneity of the GST isozymes was shown by high-resolution native isoelectrofocusing (IEF) in polyacrylamide slab gels and by SDS-PAGE. Five subunits were identified: QL1 (30.5 kDa), QL2 (27.2 kDa), QL3a (26.8 kDa), QL3b (26.5 kDa), and QL4 (25.5 kDa). Western blot analysis revealed that QL1 and QL2 reacted with antibodies raised against the rat Mu class GSTs (Yb1 and Yb2), and QL3a and QL3b reacted with those raised against the Alpha class (rat Ya and mouse a). Substrate specific activity of each isoform was determined with CDNB, DCNB, CuOOH, EA, t-PBO, ASD, and t-SO. QL3a and QL3b have high reactivity toward CuOOH, while QL1 and QL2 showed high activity toward t-SO. The N-terminal amino acid sequence of QL2 was identical to that of the chicken Mu class GST subunit CL2. However, no sequence was obtained with QL1 due to possible N-terminal blockage. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Glutathione S-transferases (GSTs), which occur abundantly in most organisms, are essentially involved in the intracellular detoxification of numerous substances including chemotherapeutic agents, and thus play a major role in the development of drug resistance. A gene encoding a protein with sequence identity of up to 37% with known GSTs was identified on chromosome 14 of the malarial parasite Plasmodium falciparum. It was amplified using gametocyte cDNA and expressed in Escherichia coli as a hexahistidyl-tagged protein of 26 kDa subunit size. The homodimeric enzyme (PfGST) was found to catalyse the glutathione (GSH)-dependent modification of 1-chloro-2,4-dinitrobenzene and other typical GST substrates such as o-nitrophenyl acetate, ethacrynic acid, and cumene hydroperoxide. The Km value for GSH was 164+/-20 microM. PfGST was inhibited by cibacron blue (Ki=0.5 microM), S-hexylglutathione (Ki=35 microM), and protoporphyrin IX (Ki=10 microM). Hemin, a most toxic compound for parasitised erythrocytes, was found to be an uncompetitive ligand of PfGST with a Ki of 6.5 microM. Based on the activity of PfGST in extracts of P. falciparum, the enzyme represents 1 to 10% of cellular protein and might therefore serve as an efficient in vivo buffer for parasitotoxic hemin. Destabilising ligands of GST are thus expected to be synergistic with the antimalarial drug chloroquine, which itself was found to be a very weak inhibitor of PfGST (IC50>200 microM). X-ray quality crystals of PfGST (250x200x50 microm) will serve as starting point for structure-based drug design.  相似文献   

12.
Six cytosolic GSTs from porcine liver were purified by a combination of glutathione affinity chromatography and ion-exchange HPLC. The isoenzymes were characterized by SDS-PAGE, gel filtration, isoelectric focusing, immunoblotting analysis and determination of substrate specificities and inhibition characteristics. The purified GSTs belong to the alpha and mu classes, respectively. No class pi isoenzyme was isolated or detected. The class alpha GST pA1-1* exists as a homodimer (Mr = 25.3 kDa), whereas GST pA2-3* consists of two subunits with different Mr values (27.0 and 25.3 kDa). The estimated pI values were 9.5 and 8.8, respectively. Furthermore, four class mu porcine GSTs, pM1-1*, pM1-2*, pM3-?* and pM4-?*, were isolated. The isoenzyme pM1-1* possesses a relative molecular mass of 27.2 kDa and a pI value of 6.2. Additional pM1 isoenzymes hybridize with the subunit pM2* (Mr = 25.2) to furnish a heterodimer, which shows a pI value of 5.8. The other class mu isoenzymes are heterodimers with pI values of 5.45 and 5.05. Substrate specificities and inhibition characteristics correlate very well with those of the corresponding human isoenzymes. The results are discussed with regard to the usefulness of porcine GSTs as an in vitro testing model.  相似文献   

13.
The activities of hepatic cytosolic glutathione S-transferases (GSTs) towards 1,2-dichloro-4-nitrobenzene in male rats were higher than those in females, however, the enzyme activities towards 1-chloro-2,4-dinitrobenzene were not significantly different between the two sexes. SDS-PAGE analysis of GSTs purified from male and female rat hepatic cytosols by affinity column chromatography showed that there was a significant difference in the subunit composition between the two sexes. With regard to the several isozymes of GSTs in male and female rats, isozymes with basic and neutral/acidic isoelectric points were separated into seven molecular species by chromatofocusing. These sex differences in the quantitative proportions of GST isozymes were also confirmed by immunotitration using anti-GST-BL and -AC antibodies. On the other hand, glutathione peroxidase (GSH-Px) activities in rat hepatic cytosol towards hydrogen peroxide and cumene hydroperoxide were markedly higher in females than in males. Of the two types of GSH-Px, selenoenzyme (Se-GSH-Px) and the Se-independent enzyme (non-Se-GSH-Px), the former was found to be mainly responsible for the sex difference in the enzyme activities. Moreover, the GSH-Px activity of GSTs, non-Se-GSH-Px, was also higher in females than that in males. Since GST isozymes of the BL type are known to possess GSH-Px activity towards cumene hydroperoxide, the increased activities of non-Se-GSH-Px in the female hepatic cytosol seemed to be mainly due to the increased transferase activities of the isozymes, GST-L2 and -BL.  相似文献   

14.
15.
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.  相似文献   

16.
Malaria parasite glutathione S-transferases (GSTs) are postulated to be essential for parasite survival by protecting the parasite against oxidative stress and buffering the detoxification of heme-binding compounds; therefore, GSTs are considered potential targets for drug development. In this study, we identified a Plasmodium vivax gene encoding GST (PvGST) and characterized the biochemical properties of the recombinant enzyme. The PvGST contained 618 bp that encoded 205 amino acids and shared a significant degree of sequence identity with GSTs from other Plasmodium species. The recombinant homodimeric enzyme had an approximate molecular mass of 50kDa and exhibited GSH-conjugating and GSH-peroxidase activities towards various model substrates. The optimal pH for recombinant PvGST (rPvGST) activity was pH 8.0, and the enzyme was moderately unstable at 37 degrees C. The K(m) values of rPvGST with respect to GSH and CDNB were 0.17+/-0.09 and 2.1+/-0.4mM, respectively. The significant sequence homology and similar biochemical properties of PvGST and Plasmodium falciparum GST (PfGST) indicate that they may have similar molecular structures. This information may be useful for the design of specific inhibitors for plasmodial GSTs as potential antimalarial drugs.  相似文献   

17.
18.
The complementary DNAs of rat glutathione S-transferase (GST, EC 2.5.1.18) Yc1 and of mouse Yc were expressed from a prokaryotic expression vector in E. coli. The purified proteins were analyzed for their activity toward aflatoxin B1-8,9-epoxide (AFBO), the reactive intermediate of the fungal mycotoxin aflatoxin B1 (AFB). The mouse Yc isozyme had about 50-fold higher conjugating activity toward AFBO than the rat Yc1 isozyme (144 nmol/mg/min versus 3.3 nmol/mg/min). The rat Yc1 isozyme had specific activities toward 1-chloro-2,4-dinitrobenzene, cumene hydroperoxide and ethacrynic acid of 10.7, 0.98 and 0.92 mumol/mg/min, respectively, whereas the mouse Yc isozyme had specific activities of 5.7, 2.1 and 0.1 mumol/mg/min for these substrates, respectively. These data provide further support for the hypothesis that the constitutive presence of the alpha class GST Yc isozyme in mouse liver protects mice from the hepatocarcinogenic effects of aflatoxin B1.  相似文献   

19.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

20.
On the multiplicity of rat liver glutathione S-transferases   总被引:7,自引:0,他引:7  
Rat liver glutathione S-transferases have been purified to apparent electrophoretic homogeneity by S-hexylglutathione-linked Sepharose 6B affinity chromatography and CM-cellulose column chromatography. At least 11 transferase activity peaks can be resolved including five Yb size homodimeric isozymes, two Yc size homodimeric isozymes, one Ya homodimeric isozyme, one Y alpha homodimeric isozyme, and two Ya-Yc heterodimeric isozymes. Distribution of the GSH peroxidase activity among the CM-cellulose column fractions suggests the existence of further multiplicity in this isozyme family. Substrate specificity patterns of the Yb subunit isozymes revealed a possibility that each of the five Yb-containing isozymes is composed of a different homodimeric Yb size subunit composition. Our findings on the increasing multiplicity of glutathione S-transferase isozymes are consistent with the notion that multiple isozymes of overlapping substrate specificities are required to detoxify a multitude of xenobiotics in addition to serving other important physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号