首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid dysfunction brings about pathological changes in different organs of the body. The aim of the present study was to examine how experimental hypothyroidism and additional short-term high-dose thyroxine administration (one-week) affected lipid peroxidation in renal and testicular tissues of rats. The study was carried out on 30 male Spraque-Dawley rats. The experimental animals were divided into 3 groups as control, hypothyroidism and hypothyroidism + thyroxine administration. Both malondialdehyde (MDA) and glutathione (GSH) levels were lower in renal and testicular tissues of the hypothyroidism group than the control and hypothyroidism + thyroxine administration groups and the levels in hypothyroidism + thyroxine administration group were higher than those in the control and hypothyroidism groups (p < 0.001). Results of the study demonstrate that hypothyroidism reduced oxidant stress in kidney and testis tissues, but short-term, high-dose thyroxine administration in addition to hypothyroidism increased oxidant stress in the same tissues of rats.  相似文献   

2.
3.
The effect of thiol antidotes 2,3-dimercapto-1-propanesulfonic acid (DMPS) and D-penicillamine (PA) on lipid peroxidation and on activities of some protecting enzymes in blood, liver and kidneys of mercury-poisoned rats has been studied. It has been found that Hg-poisoning is associated with increased lipid peroxidation in the liver and in the kidneys and with inactivation of superoxide dismutase (SOD) and catalase. Inhibition of SOD is caused by thiols treatment too, but in this case acceleration of lipid peroxidation has not been observed. Evidence is presented that in the liver, protection against mercury-induced lipid peroxidation is afforded by both thiols, while in the kidneys only PA has protective effect. In in vitro experiments it has been demonstrated that both antidotes can act as O2- scavengers and lipid peroxidation inhibitors, but PA is significantly more effective. On the basis of the obtained results a conclusion is drawn that in addition to the metal-removing ability, the antioxidant properties of the chelating agents may play an important role in manifestation of their beneficial effect in metal intoxications.  相似文献   

4.
Thyroid dysfunctions are associated with many pathological signs in the body. One of these is lipid peroxidation that develops due to over- or under-secretion of thyroid hormones. The present study was conducted to determine lipid peroxidation that develops in different tissues including the brain, liver and heart of rats in experimental hyperthyroidism induced by L-thyroxin. The study was carried out on 30 male Sprague-Dawley rats. They were divided into three groups as control, sham hyperthyroidism and hyperthyroidism. Malondialdehyde (MDA) and glutathione (GSH) levels in rat tissues were determined at the end of a 3-weeks period of L-thyroxin administration. It was observed that MDA levels in the hyperthyroidism group were significantly higher in the cerebral cortex, liver and ventriculer tissue of heart (p < 0.001) than in the control and in sham hyperthyroidism groups. GSH levels were higher in the hyperthyroidism group than in control and sham hyperthyroidism groups in all tissues (p < 0.001). Results demonstrate that hyperthyroidism induced by L-thyroxin activates both oxidant and antioxidant systems in cerebral, hepatic and cardiac tissues. However, the increase in antioxidant activity cannot adequately prevent oxidative damage.  相似文献   

5.
The effect of zinc on FeSO4/ascorbic acid-induced lipid peroxidation was measured by the thiobarbituric acid assay in various lipid systems including small unilamellar liposomes prepared from egg phosphatidylcholine (EPC), ionic micelles prepared from arachidonic acid (C20:4), non-ionic monocomponent micelles prepared from EPC-derived, methylated fatty acids, and an eicosatetrene emulsion. With the exception of C20:4 micelles, zinc inhibited lipid peroxidation in each of the above systems in a similar dose-related fashion, with 0.5 mM zinc having maximal effect. Gas-chromatographic fatty acid analysis too indicated a protective effect of zinc against FeCl3-induced lipid peroxidation in soybean PC vesicles, which do not contain C20:4 moieties. These findings, in particular the inhibition of lipid peroxidation in eicosatetrene emulsion, suggest that the presence of uncharged polar head groups, or packing of lipid molecules into ordered self-assemblages (membranes and micelles) have no critical influence on the antioxidant effect of zinc. The results with Fe2+ are compatible with the concept that zinc interferes with the formation of Fe2+-oxygen-enoic complexes. This mechanism, however, cannot account for the inhibition by zinc of the Fe#+-induced lipid peroxidation, suggesting the involvement of other types of zinc effects in these systems.  相似文献   

6.
The activity of a single IP administration (15 or 30 mg/Kg body weight) of vanillyl nonanoate, a simplified analog of capsiate, on ferric nitrilotriacetate (Fe-NTA)-mediated oxidative damage was investigated. A sub-lethal dose of Fe-NTA (15 mg Fe/Kg body weight) was administered IP to rats; animals were sacrificed, and kidney and plasma were collected 1 h after injection. In response to the Fe-NTA administration, a reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol was observed, accompanied by a rise in the concentrations of malondialdehyde (MDA), conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in plasma and kidney 1 h after administration. A pre-treatment with synthetic capsiate (SCPT) showed remarkable protective effect on the reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol, and the cellular antioxidant vitamin E, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in the plasma and kidney. The protective effect of SCPT and two analogues (vanillyl alcohol and vanillin) during the linoleic acid and cholesterol oxidation was investigated in in vitro systems, providing evidence of definite structure-activity relationships.  相似文献   

7.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and ufasomes (from linolenic acid and methyl linolenate) with the aid of an O2-(.) -generating system (Fe2+ + ascorbate) were studied. It was shown that stimulation of LPO by low Ca2+ concentrations (10(-6)-10(-5)M) was due to its ability to release Fe2+ ions bound to negatively charged (phosphate or carboxylic) lipid groups (of lecithin or linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion radicals and was not observed in LPO systems independent of O2- generation (e.g., Fe2+ + cumol hydroperoxide).  相似文献   

8.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

9.
The effect of retinyl palmitate on the polyunsaturated fatty-acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria obtained from rat liver, kidney, brain, lung and heart, was studied. After incubation of microsomes and mitochondria in an ascorbate Fe++ system (120 min at 37 degrees C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes, mitochondria and kidney microsomes in the vitamin A group than in the control group. In mitochondria obtained from control rats, the most sensitive fatty acids for peroxidation were arachidonic acid C20:4 n6 in liver and docosahexaenoic acid C22:6 n3 in kidney and brain. In microsomes obtained from control rats, the most sensitive fatty acids for peroxidation were linoleic acid C18:2 n6 and C20:4 n6 in liver and C22:6 n3 in kidney. Changes in the most polyunsaturated fatty acids were not observed in organelles obtained from lung and heart. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, showed significant changes in liver, kidney and brain mitochondria, while in microsomes changes were significant in liver and kidney. These changes were less pronounced in membranes derived from rats receiving vitamin A. Our results confirm and extend previous observations that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.  相似文献   

10.
11.
12.
The lipid peroxidation (LPO) level between in the adult and old rats brain and liver was determined as to be essentially undiffering. Stress activated the LPO independence the age of animals and tissues investigated. The concentration changes of LPO products testify to it. In the adult rats under the stress capability of tissues to induction in vitro ferment and ascorbat-depending LPO, in comparison with the control, decreases, at old--does not change in the brain and considerably grows in the liver. Stress is accompanied by an oppression of Na, K-ATP-ase PM activity of hepatocytes, more expressed in the old animals.  相似文献   

13.
Tissue and plasma levels of thiobarbituric acid reactive substances (TBARS) were measured in rats treated chronically with doxorubicin. In addition, heart creatine phosphokinase and antioxidant defenses were examined. Male rats received doxorubicin (DXR) 2 mg/kg or vehicle weekly subcutaneously for 13 weeks and were sacrificed at 14 and 19 weeks, 1 and 6 weeks after the last dose, respectively. Histological evaluation in DXR-treated rats at 14 and 19 weeks found significant and progressive cardiac and renal lesions as compared to controls. Heart TBARS were unchanged from controls. Plasma and kidney levels of TBARS were elevated above controls at both 14 and 19 weeks. Lung levels of TBARS were significantly elevated above controls at 14 weeks. Liver levels of TBARS were elevated at 19 weeks. Heart creatine phosphokinase activity was significantly depressed from controls at both 14 and 19 weeks. Heart glutathione peroxidase and superoxide dismutase activities were unchanged from controls. Heart glutathione, glutathione reductase, glucose-6-phosphate dehydrogenase, and catalase were elevated above controls at both 14 and 19 weeks. The lack of change in heart TBARS suggests that changes in TBARS in other organs may be secondary processes. The depression of creatine phosphokinase suggests that levels of adenosine triphosphate may be insufficient to sustain the myocardial function and this may partly be responsible for DXR-induced cardiac myopathy.  相似文献   

14.
Chronic administration of diazepam (DZP) caused an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH) content. DZP also markedly lowered Ca2+ATPase activity. Treatment with Se plus vitamin E reduced MDA levels and increased GSH content. Our results suggest that, increased lipid peroxidation together with alteration in Ca2+ -ATPase activity may play a role in DZP induced hepatic injury and Se plus vitamin E treatment may contribute to the attenuation of DZP induced hepatotoxicity.  相似文献   

15.
This experiment was designed to investigate the lipid peroxidation and histological effects of chronic fluorosis on first- and second-generation rat kidney tissues. Sixteen virgin female Wistar rats were mated with eight males (2∶1) for approx 12 h to obtain first-generation rats. Mating was confirmed by the presence of sperm in vaginal smears. Sperm in vaginal smears was observed in 10 of 16 rats (d 0). These rats were identified as pregnant and included in this experiment. Pregnant rats were divided into two experimental groups (control and fluoride-supplemented), each containing five rats. The pregnant rats in the fluoride-supplemented group were exposed to 30 mg/L sodium fluoride (NaF) in commercial drinking water containing 0.07 mg/L NaF throughout the gestation and the lactation periods. After the lactation period, young animals (first generation [F1]) were exposed to the same amount of NaF in drinking water for 4 mo. At the end of the 4-mo experimental period, nine randomly chosen male rats (F1) were sacrificed, and the kidneys were removed for the histological and lipid peroxidation examinations. The remaining eight female rats were mated with four males (2∶1) for approx 12 h to obtain second-generation rats. Six female were identified as pregnant, and treated similarly throughout the gestation and the lactation periods. After the lactation period, the young male rats (second-generation male rats [F2]) were also treated similarly for 4 mo. At the end of the 4-mo experimental period, nine randomly chosen male rats (F2) were sacrificed, and the kidneys were removed for the histological and lipid peroxidation examinations. The rats in the control groups underwent the same procedure without NaF supplementation. It was found that the plasma fluoride and kidney TBARS levels of fluoride-supplemented F1 and F2 rats were higher than controls. Hydropic epithelial cell degenerations and moderate tubular dilatation were observed in some proximal and distal tubules. There were markedly focal mononuclear cell infiltrations and hemorrhage at some areas of the interstitium, especially at the corticomedullar junction. Mononuclear cell infiltrations were also evident in some peritubular and perivascular areas. Most of the vascular structures were congestive. Many Bowman capsules were narrowed. The severe degenerative changes in most of the shrunken glomerules and vascular congestion were also observed. It is concluded that chronic fluorosis causes a marked destruction in kidney tissues of F1 and F2 rats by causing lipid peroxidation. Department of Orthopedics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey  相似文献   

16.
In experiments with 5-6 month male rats it was shown that whole-body gamma-irradiation (0.5 and 1.0 Gy) caused changes in the system of the antioxidant defence of the organism, the status of which influenced the intensity of lipid peroxidation in the blood.  相似文献   

17.
In this work, we studied the influence of wholebody gamma irradiation (800 rads) upon malonaldehyde (MDA) content in plasma, erythrocyte, brain, heart, lung, kidney, spleen, liver, thymus and bone marrow. MDA levels were increased in all studied samples, except lung; the highest increases were observed in the most radiosensitive organs (bone marrow, thymus, spleen) and not in those continuously exposed to high concentrations of molecular oxygen (lungs, erythrocytes). Comparison of the variations of MDA levels in plasma, kidneys and spleen to those in the other tissues lead to the hypothesis that MDA is released from tissues in plasma and trapped from plasma in kidney and spleen. The variations in plasma and erythrocyte were found not to be related to each other.  相似文献   

18.
Epidermal growth factor (EGF) is a growth-promoting polypeptide which is found in highest levels in male mice in the submaxillary gland. It may also be a key factor in regeneration of the liver. We performed experiments with 18 male Wistar rats, divided into three groups. Hepatic left lobectomy (%30) was performed on the first group of rats. This group received an intraperitoneal injection of EGF for 7 days. The second group was the control group into which normal saline was injected for 7 days. The third group was sham-operated. On days 5 and 7 tomographic studies of liver were performed. On day 7 EGF levels, lipid peroxidation, and glutathione in liver were measured in all of the rats. While serum EGF levels did not show any significant change, the levels of lipid peroxide were decreased and glutathione was increased. Tomographic measurements indicated that administration of EGF increased the amount of regeneration.  相似文献   

19.
The degree of mitochondrial ADP/Fe/NADPH-induced lipid peroxidation was increased up to the fourth day after 9.0 Gy whole body gamma-irradiation. The lipid peroxidation inhibiting effect of succinate added to isolated mitochondria was diminished as a consequence of irradiation. The succinate, administered in vivo prior to irradiation, decreased the amount of malondialdehyde production and protected the succinate dehydrogenase enzyme against inactivation. The mean survival of succinate-pretreated animals was much longer than that of controls. The role of mitochondrial lipid peroxidation in the pathogenesis of radiation injury is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号