首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term exposure to stress has detrimental effects on several brain functions in many species, including humans, and leads to neurodegenerative changes. However, the underlying neural mechanisms by which stress causes neurodegeneration are still unknown. We have investigated the role of endogenously released nitric oxide (NO) in this phenomenon and the possible induction of the inducible NO synthase (iNOS) isoform. In adult male rats, stress (immobilization for 6 h during 21 days) increases the activity of a calcium-independent NO synthase and induces the expression of iNOS in cortical neurons as seen by immunohistochemical and western blot analysis. Three weeks of repeated immobilization increases immunoreactivity for nitrotyrosine, a nitration product of peroxynitrite. Repeated stress causes accumulation of the NO metabolites NO2+ NO3- (NOx-) accumulation in cortex, and these changes occur in parallel with lactate dehydrogenase (LDH) release and impairment of glutamate uptake in synaptosomes. Administration of the selective iNOS inhibitor aminoguanidine (400 mg/kg i.p. daily from days 7 to 21 of stress) prevents NOx- accumulation in cortex, LDH release, and impairment of glutamate uptake in synaptosomes. Taken together, these findings indicate that a sustained overproduction of NO via iNOS expression may be responsible, at least in part, for some of the neurodegenerative changes caused by stress and support a possible neuroprotective role for specific iNOS inhibitors in this situation.  相似文献   

2.
3.
We investigated the effects of the Th2-like cytokines IL-4 and IL-13 and of IL-10 on the induction of iNOS and NO production in rat eosinophils. Addition of mIL-4 to the eosinophil culture increased iNOS activity and nitrite production but did not improve the stimulatory effect of IFN-gamma and LPS. In contrast to eosinophils, addition of mIL-4 to macrophage cultures inhibited the iNOS expression and nitrite production induced by IFN-gamma plus LPS. Addition of mIL-13 to the eosinophil cultures did not significantly change iNOS activity and nitrite production in cells stimulated or not with IFN-gamma plus LPS. On the other hand, IL-13 inhibited iNOS activity in IFN-gamma plus LPS-stimulated macrophages. In the presence of IL-10, iNOS activity in non-stimulated eosinophil or macrophage cultures was not significantly altered, but the enzyme expression was inhibited in IFN-gamma plus LPS-stimulated eosinophils or macrophages. The production of nitrite by eosinophils stimulated by IFN-gamma plus LPS was inhibited by the presence of IL-10 in the medium. In conclusion, eosinophils might exhibit differential modulation of the L-arginine/iNOS pathway depending on the profile of Th2 cytokines produced during allergic diseases. IL-4 appears to be an important Th2 cytokine involved in the induction of the L-arginine/iNOS pathway in eosinophils.  相似文献   

4.
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.  相似文献   

5.
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression.  相似文献   

6.
7.
8.
9.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

10.
11.
12.
Atria from mice fed a selenium-deficient (Se(-)) diet have a diminished beta-adrenoceptor-inotropic cardiac response to isoproterenol or norepinephrine compared with atria from mice fed the same diet supplemented with 0.2 mg/kg Se as sodium selenite (Se(+)). This diminished response could be reversed by feeding Se(-) mice the Se(+) diet for 1 wk or by pretreatment with nitric oxide synthase (NOS) inhibitors such as N(G)-monomethyl-l-arginine or aminopyridine. Elevated serum concentrations of nitrite/nitrate as well as a threefold increase in the atrial NOS activity were seen in the Se(-) versus Se(+) mice. Western blotting and indirect immunofluorescence indicated an enhanced expression of inducible NOS in hearts from Se(-) mice. Increased expression and activity of NOS and increased nitrite/nitrate levels from Se(-) mice correlated with an impaired response to beta-adrenoceptor inotropic cardiac stimulation. Elevated nitric oxide levels may account for some of the pathophysiological effects of Se deficiency on the heart.  相似文献   

13.
《Life sciences》1995,56(7):PL143-PL148
We have examined the effects of the herbal medicine sho-saiko-to (SST) on nitric oxide (NO) biosynthesis in rat hepatocytes by measuring the stable end-product nitrite and the mRNA of inducible NO synthase (iNOS). Interferon-γ (IFN) by itself failed to induce NO synthesis (IFN: 1-1,000 u/ml). SST also did not elicit NO synthesis at concentrations up to 300 μg/ml when administered alone, but dose-dependently induced NO production in the presence of IFN. Whereas SST or IFN induced barely detectable levels of iNOS mRNA when administered alone, a combination of SST and IFN markedly induced iNOS mRNA in the cells. SST also modestly increased NO synthesis caused by interleukin-1 or bacterial lipopolysaccharide as a single agent, or in combination with IFN. On the other hand, SST had no effects on the NO synthesis produced by iNOS which were already induced. Thus, we found that SST stimulates cultured hepatocytes to produce NO by inducing iNOS gene expression under appropriate conditions. The capability of SST to induce NO biosynthesis might be related to the therapeutic efficacy of SST on the liver diseases.  相似文献   

14.
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 μm thickness) obtained from different embryos were immunostained by avidin–biotin–immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.  相似文献   

15.
16.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

17.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

18.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

19.
Under experimental circumstances, ovariectomy attenuates gastric mucosal injury where nitric oxide (NO)-mediated pathways are involved. In this study, we have examined the changes in constitutive (cNOS) and inducible NO synthase (iNOS) enzyme activities (assessed by the citrulline assay), and the role of endogenous bacteria in ovariectomy-provoked mucosal defence. Gastric lesions were induced by indomethacin (50 mg/kg, s.c.) over a 4 h period in sham-operated and ovariectomized female Wistar rats. Groups of animals received the wide-spectrum antibiotic ampicillin (800 mg/kg/day, p.o., for 3 days), and others were injected with bacterial endotoxin (E. coli, 3 mg/kg, i.v., 5 h before autopsy). We found that ovariectomy increased iNOS and decreased cNOS activity (resulting an elevated total gastric NOS level), and protected the stomach, effects reversed by ampicillin treatment. In ovary-intact rats, administration of bacterial endotoxin enhanced gastric iNOS activity and reduced lesion-formation. These results suggest that ovariectomy improves gastric mucosal defence perhaps by endogenous bacteria-triggered induction of iNOS.  相似文献   

20.
The present study was undertaken to investigate the role of inducible nitric oxide synthase in a rat model of persistent pain. The effects of L-N6 (1-iminoethyl) lysine (L-NIL), a relatively potent and relatively selective inhibitor of inducible nitric oxide synthase, were investigated in carrageenan induced hyperalgesia L-NIL (0.1 microMole) injected intraplantar or intrathecal markedly enhanced carrageenan induced hyperalgesia. These effects were reversed during the third hour by co-administration of L-arginine (900 mg/kg i.p.) but not D-arginine. Methylene blue (MB), a soluble guanylate cyclase inhibitor, administered intrathecally (0.1 microg) had no effect on L-NIL potentiation of carrageenan hyperalgesia but abolished antinociception induced by L-arginine. Obtained results suggest that nitric oxide derived from inducible nitric oxide synthase play an inhibitory role in carrageenan produced hyperalgesia in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号