首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Experimental objectives. Because myocardial infarct is associated with overactivation of brain angiotensin II (ANG II) and vasopressin (AVP) V1a receptors we decided to determine whether AT1 and V1a receptors-mediated effects of ANG II and AVP interact in central cardiovascular control during the post-infarct state. Four groups of infarcted and four groups of sham-operated conscious rats entered the study. Results. In the infarcted rats cerebroventricular infusion of AT1 (AT1ANT, losartan) and V1a antagonist {V1aANT,d(CH(2))(5)[Tyr(Me)(2)Ala-NH(2)(9)]VP} and combined infusion of both these compounds performed 4 weeks after induction of the infarct significantly and comparably reduced mean arterial blood pressure (MABP) in comparison to control experiments (artificial cerebrospinal fluid infusion). In the sham rats MABP was not affected by any of the infusions. In control experiments MABP and HR responses to an alarming air jet stress were significantly higher in the infarcted than in the sham rats. Both responses were normalized with the same effectiveness by administration of AT1ANT, V1aANT and AT1ANT+V1aANT. In the sham rats administration of these compounds did not affect MABP and HR responses to stress. Conclusion: The results provide evidence for interaction of AT1 and V1a receptors-mediated effects of ANG II and AVP in the central cardiovascular control during the post-infarct state.  相似文献   

2.
Md S  Moochhala SM  Siew-Yang KL 《Life sciences》2003,73(14):1825-1834
Hemorrhagic shock (HS) has been implicated in the induction of inducible nitric oxide synthase (iNOS) that leads to increase production of nitric oxide (NO). Recently, NO has been implicated to cause hyporesponsiveness of blood vessel in vitro towards vasoconstrictors in refractory (decompensated) HS. In our in vivo model, we examined the effects of aminoguanidine (AG), a known iNOS inhibitor, with angiotensin II (ANG II), a vasoconstrictor, following hemorrhagic shock decompensatory phase (HSDP) on percentage survival, vascular responsiveness, mean arterial blood pressure (MABP), heart rate and mean nitrate/nitrite levels in anaesthetized rats. HSDP (3 h) was achieved via constant pressure method (40-45 mmHg). MABP and heart rate was measured via the left carotid artery. Plasma collected from HSDP rats was used to measure nitrate/nitrite levels. Vascular hyporeactivity to ANG II was carried out using HSDP aortic strips, precontracted with KCl and noradrenaline. Sham-operated rats served as controls. HSDP rats decreased percentage survival, vascular contractility to ANG II and noradrenaline, MABP, heart rate while showing increased levels of nitrate/nitrite. Infusion of AG with ANG II, increased percentage survival and had reversed these cardiovascular effects of HSDP rats. This study indicates that excessive NO formation from iNOS activity induces vascular hyporeactivity and decompensation in HSDP. This might suggest that selective NOS inhibitor, AG, when coupled with ANG II, show reduction in NO's effect in HSDP.  相似文献   

3.
Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng x kg(-1) x min(-1) iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.  相似文献   

4.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

5.
The hypothalamic arcuate nucleus (ARCN) has been reported to play a significant role in cardiovascular regulation. It has been hypothesized that the ARCN may be one of the sites of cardiovascular actions of angiotensins (ANGs). Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. The ARCN was identified by microinjections of N-methyl-d-aspartic acid (NMDA; 10 mM). Microinjections (50 nl) of ANG-(1-12) (1 mM) into the ARCN elicited increases in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). The tachycardic responses to ANG-(1-12) were attenuated by bilateral vagotomy. The cardiovascular responses elicited by ANG-(1-12) were attenuated by microinjections of ANG II type 1 receptor (AT(1)R) antagonists but not ANG type 2 receptor (AT(2)R) antagonist. Combined inhibition of ANG-converting enzyme (ACE) and chymase in the ARCN abolished ANG-(1-12)-induced responses. Microinjections of ANG II (1 mM) into the ARCN also increased MAP and HR. Inhibition of ARCN by microinjections of muscimol (1 mM) attenuated the pressor and tachycardic responses to intravenously administered ANG-(1-12) and ANG II (300 pmol/kg each). These results indicated that 1) microinjections of ANG-(1-12) into the ARCN elicited increases in MAP, HR, and GSNA; 2) HR responses were mediated via both sympathetic and vagus nerves; 3) AT(1)Rs, but not AT(2)Rs, in the ARCN mediated ANG-(1-12)-induced responses; 4) both ACE and chymase were needed to convert ANG-(1-12) to ANG II in the ARCN; and 5) ARCN plays a role in mediating the cardiovascular responses to circulating ANGs.  相似文献   

6.
Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes.  相似文献   

7.
Males develop higher blood pressure than do females. This study tested the hypothesis that androgens enhance responsiveness to ANG II during the development of hypertension in New Zealand genetically hypertensive (NZGH) rats. Male NZGH rats were obtained at 5 wk of age and subjected to sham operation (Sham) or castration (Cas) then studied at three age groups: 6-7, 11-12, and 16-17 wk. Mean arterial blood pressure (MAP), heart rate (HR), and renal blood flow (RBF) measurements were recorded under Inactin anesthesia. These variables were measured after enalapril (1 mg/kg) treatment and during intravenous ANG II infusion (20, 40, and 80 ng/kg/min). Plasma testosterone was measured by ELISA. Angiotensin type 1 (AT1) receptor expression was assessed by Western blot analysis and RT-PCR. ANG II-induced MAP responses were significantly attenuated in Cas NZGH rats. At the highest ANG II dose, MAP increased by 40+/-4% in Sham vs. 22+/-1% in Cas NZGH rats of 16-17 wk of age. Similarly, renal vascular resistance (RVR) responses to ANG II were reduced by castration (209+/-20% in Sham vs. 168+/-10% in Cas NZGH rats at 16-17 wk of age). Castration also reduced MAP recorded in conscious NZGH rats of this age group. Testosterone replacement restored baseline MAP and the pressor and RVR responses to ANG II. Castration reduced testosterone concentrations markedly. Testosterone treatment restored these concentrations. Neither castration nor castration+testosterone treatment affected AT1 receptor mRNA or protein expression. Collectively, these data suggest that androgens modulate renal and systemic vascular responsiveness to ANG II, which may contribute to androgen-induced facilitation of NZGH rat hypertension.  相似文献   

8.
In addition to the long-term renal complications, previous studies suggested that after acute renal failure (ARF), rats manifest an increased pressor response to an overnight infusion of ANG II. The present study tested whether recovery from ARF results in alterations in sensitivity to the peripheral vasculature. ARF was induced in Sprague-Dawley rats by 45 min of bilateral renal ischemia and reperfusion. Animals were allowed to recover renal structure and function for 5-8 wk, after which the acute pressor responses to ANG II were evaluated either in vivo in in situ skeletal muscle arterioles or in isolated gracilis muscle arteries in vitro. Baseline arterial pressure was not different in ARF rats vs. sham-operated controls, although ARF rats exhibited an enhanced pressor response to bolus ANG II infusion compared with control rats. Steady-state plasma ANG II concentration and plasma renin activity were similar between ARF and control rats. Constrictor reactivity of in situ cremasteric arterioles from ARF rats was enhanced in response to increasing concentrations of ANG II; however, no difference was observed in arteriolar responses to elevated PO2, norepinephrine, acetylcholine, or sodium nitroprusside. Isolated gracilis muscle arteries from ARF rats also showed increased vasoconstriction in response to ANG II but not norepinephrine. In conclusion, recovery from ischemic ARF is not associated with hypertension but is associated with increased arteriolar constrictor reactivity to ANG II. Although the mechanisms of this altered responsiveness are unclear, such changes may relate, in part, to cardiovascular complications in patients with ARF and/or after renal transplant.  相似文献   

9.
The role of cyclooxygenase (COX)-1 and -2 in prostanoid formation and modulation of pressor responses to ANG II was investigated in the pulmonary and systemic vascular beds in the rat. In the present study, selective COX-1 and -2 inhibitors attenuated increases in pulmonary arterial pressure and decreases in systemic arterial pressure in response to arachidonic acid but did not alter responses to PGE1 or U-46619. The selective COX-1 and -2 inhibitors did not modify systemic pressor responses to injections or infusions of ANG II or pulmonary pressor responses to injections of the peptide. COX-2 inhibitors did not alter, whereas a COX-1 inhibitor depressed, arachidonic acid-induced platelet aggregation. These data provide evidence in support of the hypothesis that prostanoid synthesis occurs by way of the COX-1 and -2 pathways in the pulmonary and systemic vascular beds but that pressor responses to ANG II are not mediated or modulated by these pathways in the rat.  相似文献   

10.
Angiotensin II (ANG II) causes a systemic pressor effect when injected into the cerebral ventricles. In the rat fourth ventricle, the effective doses for the ANG II pressor effect are over 100 times larger than in the systemic circulation. Considering the discrepancy of doses, the possibility that ANG II may reach the systemic circulation and promote pressor effects, following injection into the fourth ventricle, was investigated. The effects on blood pressure of different vasoactive peptides that produce pressor responses when injected into the central nervous system were compared. Dose-response curves were obtained for intravenous or fourth cerebroventricular injections of ANG II, lysyl-vasopressin (LVP), bradykinin (BK), or endothelin-1 (ET-1). The ED50 ratios for intracerebroventricular/intraveneous injections were 110 for ANG II, 109 for LVP, 0.01 for BK, and approximately 0.4 for ET-1. In cross-circulation preparations, pressor responses occurred in the donor rat following injection into the fourth cerebral ventricle of the recipient animal, showing that effective doses of ANG II, administered to the fourth cerebral, reach the systemic circulation. The same results were obtained for the microinjection of 4 nmol of LVP into the fourth cerebral ventricle of recipient animals. High-performance reverse-phase liquid chromatography analyses of arterial blood showed that approximately 1% of the [125I]ANG II injected into the fourth cerebral ventricle may be recovered from the systemic circulation a few seconds after the microinjection. The systemic administration of the ANG II receptor antagonist losartan blocked the response to ANG II injected into the fourth ventricle whereas antagonist administration in the same ventricle did not. Angiotensin injections into the lateral ventricle produced pressor responses that were reduced by antagonist administration to the same ventricle but not by systemic administration of the antagonist. The data suggest that the pressor effect resulting from ANG II or LVP injections into the fourth cerebral ventricle may be due to the action of this peptide in the systemic circulation. On the other hand, the pressor effect due to ANG II microinjection into the lateral ventricle apparently results from the direct stimulation of central periventricular structures.  相似文献   

11.
Increased dietary sodium enhances both excitatory and inhibitory blood pressure responses to stimulation of the central sympathetic nervous system (SNS) centers. In addition, long-term (hours to days) administration of ANG II increases blood pressure by activation of the SNS. These studies investigated the effects of increased dietary sodium on SNS control of blood pressure during 0- to 24-h infusion of ANG II in conscious, male rats consuming either tap water or isotonic saline (Iso) for 2 to 3 wk. The SNS component (evaluated by ganglionic blockade with trimetaphan) of both control blood pressure and the pressor response to intravenous ANG II was reduced in Iso animals. Furthermore, although the pressor response to intravenous ANG II infusion was similar between groups, the baroreflex-induced bradycardia during the initial 6 h of ANG II infusion was significantly greater, whereas the tachycardia accompanying longer infusion periods was significantly attenuated in Iso animals. These data suggest that in normal rats increased dietary sodium enhances sympathoinhibitory responses during intravenous ANG II.  相似文献   

12.
Angiotensin II (ANG II) is known to activate central sympathetic neurons. In this study we determined the effects of ANG II on the autonomic components of the cardiovascular responses to stimulation of nasopharyngeal receptors with cigarette smoke. Experiments were carried out in conscious New Zealand White rabbits instrumented to record arterial pressure and heart rate. Rabbits were exposed to 50 ml of cigarette smoke before and after subcutaneous osmotic minipump delivery of ANG II at a dose of 50 ng.kg(-1).min(-1) for 1 wk in one group and intracerebroventricular (icv) infusion at a dose of 100 pmol/min for 1 h in a second group. The responses were compared before and after heart rate was controlled by pacing. Autonomic components were evaluated by intravenous administration of atropine methyl bromide (0.2 mg/kg) and prazosin (0.5 mg/kg). ANG II given either systemically or icv significantly blunted the pressor response to smoke (P < 0.05) when the bradycardic response was prevented. This blunted response was not due to an absolute increase in baseline blood pressure after ANG II infusion (71.64 +/- 11.6 vs. 92.1 +/- 19.8 mmHg; P < 0.05) because normalization of blood pressure with sodium nitroprusside to pre-ANG II levels also resulted in a significantly blunted pressor response to smoke. The effect of smoke was alpha(1)-adrenergic receptor-mediated because it was essentially abolished by prazosin in both the pre- and the post-ANG II states (P < 0.05). These results suggest that elevations in central ANG II reduce the sympathetic response to smoke in conscious rabbits. This effect may be due to an augmentation of baseline sympathetic outflow and a reduction in reflex sensitivity similar to the effect of ANG II on baroreflex function.  相似文献   

13.
Female growth-restricted offspring are normotensive in adulthood. However, ovariectomy induces a marked increase in mean arterial pressure (MAP) that is abolished by renin angiotensin system (RAS) blockade, suggesting RAS involvement in the etiology of hypertension induced by ovariectomy in adult female growth-restricted offspring. Blockade of the RAS also abolishes hypertension in adult male growth-restricted offspring. Moreover, sensitivity to acute ANG II is enhanced in male growth-restricted offspring. Thus, we hypothesized that an enhanced sensitivity to acute ANG II may contribute to hypertension induced by ovariectomy in female growth-restricted offspring. Female offspring were subjected to ovariectomy (OVX) or sham ovariectomy (intact) at 10 wk of age. Cardio-renal hemodynamic parameters were determined before and after an acute infusion of ANG II (100 ng·kg(-1)·min(-1) for 30 min) at 16 wk of age in female offspring pretreated with enalapril (40 mg·kg(-1)·day(-1) for 7 days). Acute ANG II induced a significant increase in MAP in intact growth-restricted offspring (155 ± 2 mmHg, P < 0.05) relative to intact control (145 ± 4 mmHg). Ovariectomy augmented the pressor response to ANG II in growth-restricted offspring (163 ± 2 mmHg, P < 0.05), with no effect in control (142 ± 2 mmHg). Acute pressor responses to phenylephrine did not differ in growth-restricted offspring relative to control, intact, or ovariectomized. Furthermore, renal hemodynamic responses to acute ANG II were significantly enhanced only in ovariectomized female growth-restricted offspring. Thus, these data suggest that enhanced responsiveness to acute ANG II is programmed by intrauterine growth restriction and that sensitivity to acute ANG II is modulated by ovarian hormones in female growth-restricted offspring.  相似文献   

14.
Compromised microvascular responsiveness is one of the key factors associated with mortality of septic patients. The present study addresses the mechanism of protection by ascorbate against impaired vasoconstriction in septic mice. Sepsis (i.e., cecal ligation and puncture (CLP) model) elevated both plasma protein carbonyl (i.e., an index of oxidative stress) and plasma nitrite/nitrate (NOx) levels, reduced baseline mean arterial blood pressure (MABP), and inhibited the MABP pressor response to angiotensin II (Ang II) at 6 h post-CLP. At the microvascular level, sepsis increased the inducible nitric oxide synthase (iNOS) mRNA level in cremaster muscle arterioles (18-25 microm diameter) at 3 h post-CLP, and impaired vasoconstriction to Ang II in these arterioles at 6 h post-CLP. At 24 h post-CLP, sepsis resulted in 9% survival. An intravenous bolus of ascorbate (200 mg/kg body wt) given 30 min prior to CLP prevented the protein carbonyl and NOx increases, partially restored the baseline arterial pressure, and completely protected against all arteriolar iNOS mRNA increases, arteriolar constriction hyporesponsiveness, and pressor response impairment. Survival increased to 65%. In septic mice, iNOS gene knockout resulted in protection of arteriolar constriction and pressor responses identical to that provided by ascorbate. Ascorbate bolus given 3 h post-CLP protected against the increase in plasma NOx concentration and against the pressor response impairment. We conclude that ascorbate may protect arteriolar vasoconstrictor responsiveness in sepsis by inhibiting excessive NO production.  相似文献   

15.
Exposure of the early gestation ovine fetus to exogenous glucocorticoids induces alterations in postnatal cardiovascular physiology, including hypertension. To determine whether autonomic function and systemic vascular reactivity are altered by in utero programming before the development of systemic hypertension, we examined arterial baroreflex function and in vivo hemodynamic and in vitro vascular responses to vasoactive agents in 10- to 14-day-old newborn lambs exposed to early gestation glucocorticoids. Dexamethasone (Dex, 0.28 mg.kg-1.day-1) or saline was administered to pregnant ewes by intravenous infusion over 48 h beginning at 27 days gestation (term 145 days), and lambs were allowed to deliver (n=6 in each group). Resting mean arterial blood pressure (MABP; 77+/-1 vs. 74+/-3 mmHg) and heart rate (HR; 249+/-9 vs. 226+/-21 beats/min) were similar in Dex-exposed and control animals, respectively. The arterial baroreflex curve, relating changes in HR to MABP, was significantly shifted toward higher pressure in the Dex-exposed lambs although no change in the sensitivity (gain) of the response was seen. In vivo changes in blood pressure in response to bolus doses of ANG II (20, 50, and 100 ng/kg) and phenylephrine (2, 5, and 10 microg/kg) were similar in the two groups. However, Dex lambs displayed greater decreases in MABP in response to ganglionic blockade with tetraethylammonium bromide (10 mg/kg; -30+/-3 vs. -20+/-3 mmHg, P<0.05) and greater increases in MABP after nitric oxide synthase blockade with NG-nitro-L-arginine (25 mg/kg; 23+/-3 vs. 13+/-2 mmHg, P<0.05) compared with control lambs. By in vitro wire myography, mesenteric and femoral artery microvessel contractile responses to KCl were similar, whereas responses to endothelin (in mesenteric) and norepinephrine (in femoral) were significantly attenuated in Dex lambs compared with controls. Femoral vasodilatory responses to forskolin and sodium nitroprusside were similar in the two groups (n=4). These findings suggest that resetting of the baroreflex, accompanied by increased sympathetic activity and altered nitric oxide-mediated compensatory vasodilatory function, may be important contributors to programming of hypertension.  相似文献   

16.
Diabetes and insulin resistance are associated with an increased risk of hypertension and cardiovascular disease. Recent evidence demonstrates that AT2 receptors (AT2R) play an important role in the hemodynamic control of hypertension by vasodilation. The quantitative significance of AT2R in the establishment of diabetic vascular dysfunction, however, is not well defined and needs further investigation. Goto-Kakizaki (GK) rats, a polygenic model of spontaneous normotensive type 2 diabetes, were used to examine any abnormalities in cardiovascular function associated with AT2R at the early stage of the disease without endothelium influence. Using a myograph to measure the isometric force, we observed that ANG II-induced contraction was impaired in denuded GK aorta compared with control Wistar-Kyoto (WKY) aorta and exhibited a retarded AT1R antagonist response and enhanced Rho kinase signaling. When AT1R were blocked, ANG II induced a significant vasodilation of precontracted GK aorta via AT2R. The protein and mRNA of AT2R were increased in diabetic GK denuded aorta. Blocking AT2R restored the ANG II-induced contraction in the GK vasculature to control levels, demonstrating a counteractive role for AT2R in AT1R-induced contraction. Inhibition of inducible nitric oxide synthase (iNOS) by NG-monomethyl-L-arginine mimicked AT2R inhibition in denuded GK aorta, suggesting that AT2R-induced vasodilation was dependent on iNOS/NO generation. The protein and mRNA of iNOS were also increased in GK aorta. In conclusion, these results clearly demonstrate that enhanced AT2R and iNOS-induced, NO-mediated vasodilation impair ANG II-induced contraction in an endothelium-independent manner at the early stage of type 2 diabetes.  相似文献   

17.
Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT(2)) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT(1)) receptor-mediated alpha-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine alpha-receptor blockade and in the absence or presence of AT(1) receptor blockade in pregnant and nonpregnant ewes. Systemic alpha-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine alpha-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine alpha-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT(1) receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT(1) receptor blockade + systemic alpha-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT(2) receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT(1) receptors, whereas increases in UVR reflect AT(1) receptor-mediated release of an alpha-agonist and uterine autoregulatory responses.  相似文献   

18.
Systemic and pulmonary vascular reactivity to graded doses of angiotensin I (ANG I), angiotensin II (ANG II), and, as a control, phenylephrine were examined in 14- or 28-day hypoxia-exposed and air control rats. Hypoxic rats exhibited pulmonary hypertension that was reversible on return to room air, but systemic arterial pressure was not altered by hypoxia. Systemic pressor responses to ANG I and ANG II were significantly less in the hypoxic rats than in the control rats at 14 and 28 days but returned to control levels in hypoxic animals that were then returned to room air, demonstrating reversibility of the hypoxia-induced changes in vascular reactivity. Pulmonary pressor responses to ANG I were significantly less at 14 days, whereas responses to ANG II were significantly greater at 28 days, in hypoxic rats than in controls. There were no significant differences in systemic and pulmonary pressor responses to phenylephrine between the hypoxic and air control animals. The altered systemic and pulmonary pressor responsiveness to ANG I and ANG II in hypoxic rats is probably related to mechanisms specific to the renin-angiotensin system, such as inhibition of intrapulmonary angiotensin-converting enzyme activity and down regulation of ANG II receptors in the systemic circulation. Further study is needed to elucidate these mechanisms.  相似文献   

19.
In this study we evaluated by telemetry the effects of ANG II and ANG-(1-7) infusion on the circadian rhythms of blood pressure (BP) and heart rate (HR) and on the cardiovascular adjustment resulting from restraint stress in rats. ANG II or ANG-(1-7) or vehicle were infused subcutaneously for 7 days. Restraint stress was carried out before, during, and after infusion at 7-day intervals. Parallel with an increase in MAP, ANG II infusion produced an inversion of MAP circadian rhythm with a significant MAP acrophase inversion. It also produced bradycardia during the first 3 days of infusion. Thereafter, HR progressively increased, reaching values similar to or above those of the control period at the end of the infusion period. HR circadian variation was not changed by ANG II infusion. Strikingly, ANG II significantly attenuated the increase in MAP induced by restraint stress without altering the HR response. ANG-(1-7) infusion produced a slight but significant decrease in MAP restricted to the daytime period. No significant changes in the MAP acrophase were observed. In addition, ANG-(1-7) infusion produced a small but significant sustained bradycardia. ANG-(1-7) did not change cardiovascular responses to restraint stress. These data indicate that ANG II can influence the activity of brain areas involved in the determination of stress-induced or circadian-dependent variations of blood pressure without changing HR fluctuations. A significant modulatory influence of ANG-(1-7) on basal MAP and HR is also suggested.  相似文献   

20.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号